
Exploiting Semantic Clustering in the eDonkey P2P Network

S. Handurukande†, A.-M. Kermarrec‡, F. Le Fessant∗ & L. Massoulié?

†Distributed Programming Laboratory, EPFL, Switzerland
‡INRIA, Rennes, France

∗ INRIA-Futurs and Lix, Palaiseau, France
? Microsoft Research, Cambridge, UK

Abstract

Peer-to-peer file sharing now represents a significant
portion of the Internet traffic and has generated a lot
of interest from the research community. Some re-
cent measurements studies of peer-to-peer workloads
have demonstrated the presence of semantic proxim-
ity between peers. One way to improve performance
of peer-to-peer file sharing systems is to exploit this
locality of interest in order to connect semantically
related peers so as to improve the search both in
flooding- and server-based systems. Creating these
additional connections raises interesting challenges
and in particular (i) how to capture the semantic
relationship between peers (ii) how to exploit these
relationships and (iii) how to evaluate these improve-
ments. In this paper, we evaluate several strategies to
exploit the semantic proximity between peers against
a real trace collected in November 2003 in the eDon-
key 2000 peer-to-peer network. We present the re-
sults of this evaluation which confirm the presence of
clustering in such networks and the interest to exploit
it.

1 Introduction and background

File sharing peer-to-peer systems have significantly
grown the past decade to the extent that they are
now the highest consumers of Internet bandwidth
[11, 14, 16]. As expected, this has generated a lot of
interest from the research community to understand
these applications, measure their workloads, propose
new architectures [15, 20] and improve existing ones
[7].

Peer-to-peer file sharing systems usually either rely
on flat overlays such as Gnutella [3] in which the pri-
mary search algorithm is based on flooding, or hierar-
chical overlays composed of a set of servers indexing
peers contents and in charge of redirecting requests.
Examples of such hierarchical systems are KaZaA [4]
and eDonkey [1]. Besides, number of research works
have been done to improve the search mechanism

by optimizing replication strategies [13] or switch-
ing from flooding to random walks [7]. Recent works
[6, 12] propose to build Gnutella-like systems in com-
bination with structured peer-to-peer overlays.

More recently, another class of research aims
at capturing and exploiting semantic proximity or
interest-based proximity to improve the search in
peer-to-peer file sharing systems. Semantic proximity
between peers is defined as the similarities between
their cache contents or download patterns. The idea
behind these works is that semantically related peers
are more likely to be useful to each other (e.g., than
random peers). Therefore, it might be useful to con-
nect semantically related peers in the overlay. These
peers, called semantic neighbours in the rest of this
paper, are solicited first in the search process because
the probability that they are able to satisfy a request
might be quite high. In other words, in Gnutella style
search schemes the semantic neighbours are queried
first; if this first phase fails the normal gossip style
phase is performed. In hierarchical schemes like in
KaZaA the first phase can be used to bypass the
servers (aka super peers) thus alleviating their load.

There are several ways of capturing the seman-
tic relationship between peers. One approach is to
explicitly identify distinct semantic groups of docu-
ments, using a predefined classification and to build
separate overlays for each separate semantic relation-
ship [8]. Precise classification is always a difficult
task and the permanent classification may lead to a
static configuration which cannot adapt to changes
in peers preferences or recovers from a wrong classi-
fication. At the other end of the spectrum, in [19],
semantic shortcuts are dynamically created to link
peers sharing some interests. The semantic relation-
ship between peers is captured implicitly based on
the most recent downloads. In [21], alternative ways
of creating shortcuts are proposed and evaluated in
the context of a synthetic workload.

In a recent paper [9], we presented a clustering
analysis of peer-to-peer file sharing traces that we ob-
tained crawling the eDonkey network during a three

1



days period. This preliminary study demonstrated
that there is a significant overlap between peers con-
tents that one can consider as semantic proximity be-
tween peers. In this paper, we evaluate several strate-
gies using implicit or explicit semantic relationships.
We evaluate these approaches using the eDonkey 2000
trace we obtained in November 2003. The rest of
this paper is organized as follows; in Section 2, we
briefly present the experimental setting including the
description of the trace; in Section 3, we present the
evaluation of three simple strategies (i) implicit se-
mantic; (ii) semantic overlay, and (iii) light explicit
semantic, before concluding in Section 4.

2 Experimental setting

2.1 Peer-to-peer workload

One of the main challenges to validate improvements
in peer-to-peer systems is to be able to use realis-
tic input data. In the last few years some measure-
ments studies have been carried out [17, 18, 5, 10]
mainly concerned by peer requests, connectivity and
availability. Therefore, the associated traces did not
include content of the peers (the offered files to the
other peers) that we need to carry out our evalua-
tions.

In a recent study [9], we collected and analyzed
a peer-to-peer file sharing application trace, focus-
ing on the clustering properties of the peers. To this
end, we actively probed a community of the eDon-
key 2000 clients, the main competitor of KaZaA, re-
cently referred as ahead of KaZaA in Europe [22]. We
obtained a trace of 12,000 clients, sharing 923,000
documents, distributed worldwide with a majority
in Europe. We obtained a trace containing for each
client, its list of cache contents. In our analysis, we
measured files popularity as the number of replicas
over the peers’ caches. An interesting observation is
that the popularity distribution of the files is similar
whether it is related to the number of requests [10] or
the number of replicas. The study presented in [10]
concluded on a fetch once behavior : peers tend to
download files only once and therefore do not exhibit
temporal locality in their access patterns.

Given this combination of observations, we con-
cluded that a list of cache contents can reasonably be
used as a list of requests as explained bellow.

2.2 Simulation environment

We wrote a simple discrete-event simulator composed
of n nodes to simulate the file exchange between peers
and search only using semantic neighbours in a peer-

to-peer file sharing system1. We assigned nodes ran-
domly to the eDonkey clients of the trace. The sim-
ulator maintains the global list of the files shared in
the system. Each client is associated with a list of
files according to the real trace. The simulation con-
sists in, for each client, requesting sequentially each
file of its list. Two situations may occur when a node
n requests a file f : (i) either f has already been re-
quested in the system and is replicated in other peers
caches. In that situation, n downloads f from one
of those peers and updates its semantic neighbours
list accordingly (as we will expand in Section 3). If
more than one peer has the file, all those peers are
taken into account when updating the list. (ii) n is
the first peer requesting f and we then consider that
n maintains the initial replica of f .

3 Simulating semantic links

3.1 Implicit semantic neighbours

In the first set of experiments, we evaluate two of the
strategies described in [21]. To this end, we computed
the hit ratio due to the use of semantic neighbours as
opposed to random peers. We implemented both the
history and LRU strategies. Each peer maintains a
list of semantic neighbours, updated during the sim-
ulation as follows:

0

10

20

30

40

50

60

5 10 20 100 200 2000

Contacted Peers

H
it

s 
%

LRU

Random

Figure 1: Hit rate with LRU

LRU. The most natural strategy to capture recent
history (which proved to work pretty well in data
management systems, such as caches for example) is
to order the semantic neighbours such that the most
recent uploader2 peer is placed at the top of the list
and to remove the least recent one if needed. This

1The search algorithm is orthogonal to the way we use the
semantic neighbours so we did not implement the search algo-
rithm.

2uploader is a peer who offered a desired file to another peer

2



0

10

20

30

40

50

60

5 10 20 100 200 2000

Contacted Peers

H
it

s 
%

History-based
Random
LRU

Figure 2: Hit rate, history

method is mostly used in [19] and in [21]. Upon a
request, the x (x is a system parameter) first neigh-
bours of the list are requested first. The standard
search mechanism is then used in case of a miss.

History. This strategy has first been introduced in
[21]. This approach aims at capitalizing on a larger
period of history. Where the LRU strategy selects
the x most recent useful peers, History selects the x
most useful peers over a time frame. To this end,
a peer i maintains an entry for a set of peers de-
picting how many times the peer i has downloaded
a document from other peers with whom peer i pre-
viously interacted with. In other words, each peer
(with whom peer i previously interacted) is associ-
ated with a counter; the peer i increments the counter
of peer j whenever i downloads a file from j. The
implementation of this strategy presents several is-
sues. First of all, the data structure associated with
each peer for this purpose grows linearly with the
number of uploaders. However, such a data structure
might be leveraged by other mechanisms such as in-
centives [2]. Secondly, deciding on a relevant period
is not straightforward: if the period is too long, the
strategy will not be able to adapt to change of pref-
erences or interests; on the other hand, if the period
is too short, the benefit of using history over LRU is
not clear.

Figure 1 displays the hit rate depending on the
number of semantic neighbours contacted (as speci-
fied by the parameter x). For the purpose of com-
parison, the hit rate when choosing the same num-
ber of random neighbours is also shown. We observe
that the results are very encouraging: even with as
few as 5 peers detected as semantically related based
on recent downloads, there is a hit rate of close to
30%. Note that the experiment starts with an empty
semantic neighbours lists. On the contrary, the hit

rate when neighbours are selected randomly is very
low and remains low even with a significant number
of peers.

Figure 2 shows the hit ratio for the same configu-
ration using History (for the purpose of comparison
we also plot the hit ratio of LRU). Results show that
history gives a slightly better hit ratio in the context
of this trace. However, the fact that in our trace we
do not capture any notion of time, we do not detect
any dynamic changes in user preferences.

0

10

20

30

40

50

60

0 50 100 150 200 250

List Size (with LRU)

H
its

 %

With All Peers

Top 10% of Donors Removed

Top 5% of Donors Removed

Figure 3: Impact of the removal of the x% more gen-
erous uploaders

The observed improvement in the hit ratio suggests
that there is indeed some semantic proximity which
is implicitly captured and exploited by the LRU and
History strategies. However, the presence of generous
uploaders could confuse the semantic relationships.
If a few peers provide most of the contents, which
has been usually observed in measurements studies,
it might be the case that the semantic neighbour lists
are mostly populated with these peers. To evaluate
the impact of generous peers, we conducted a comple-
mentary experiment where we removed from the se-
mantic neighbour lists the u% most generous upload-
ers, where we experimented with u=5%,10%,15%.
Figure 3 shows the results. We observed that the
hit ratio drops roughly by 6%. This is an indica-
tion that the hit ratio is influenced by the presence
of very generous uploaders who contribute a large
amount of files. In other words, the semantic neigh-
bour lists contain the IDs of very generous peers. But
as seen in Figure 3, when the percentage of u is in-
creased from 5 to 15 the reduction of hit ratio keeps
unchanged for smaller list sizes (e.g., 5, 10, 20). This
indicates that beside the generous peers syndrome,
the semantic clustering truly exists. Otherwise the
hit ratio would have been decreased linearly as the u
is increased. On the other hand, even if the semantic
lists contain the IDs of very generous peers, contact-

3



ing peers in the list pays off well since the approach
allows to bypass the normal search mechanism (either
gossip-based or server-based) which is generally very
expensive due to flooding or due to heavily loaded
servers.

3.2 Semantic overlay

In the second set of experiments, we investigate the
transitivity of the semantic relationship. Is it true
that the semantic neighbours of my semantic neigh-
bours are my semantic neighbours?. To this end,
we extended the search to two hops away, using the
semantic neighbours. More precisely, first a peer
searches using its semantic neighbours; failing that,
the peer uses the semantic neighbours of its seman-
tic neighbours by forwarding the search query on an
overlay network made up of semantic neighbours. Re-
sults are depicted on Figure 4. For comparison, we
plot the results obtained according to the list size
(as specified by x) of semantic neighbours for both
direct semantic neighbours and 2nd level semantic
neighbours which are 2 hops away. In other words,
the amount of memory used to keep the information
about semantic neighbours at each peer is fixed for
2 schemes; but for a given size of the list (or x) the
number of nodes contacted while searching is much
higher (in the worst case scenario) when the 2nd level
of semantic neighbours are also used. For example,
when the list size is 5, in the worst case scenario, 25
peers are contacted in the 2nd level semantic search.

0

10

20

30

40

50

60

70

80

5 10 20 100

List Size

H
it

s 
%

2nd Hop Semantic

One Hop

Figure 4: Semantic overlay

Results do not exhibit better results for 2nd level
semantic search in particular, if we consider that the
important factor is the number of peers contacted.
However, the fact that 2nd-level semantic search pro-
vides similar results as when the same number of
semantic neighbours peers are contacted during the
first hop, shows that semantic links tend to automat-

ically cluster semantically-related peers.

3.3 Explicit semantic

As we observed in previous experiments, simple
heuristic enables to capture implicit semantic rela-
tionships between peers (without any additional in-
formation on the content exchanged or the peer pro-
files) and to cluster peers together. On the other
hand, the information about the type of file being
searched and peer profiles (such as the content they
store) can be used to make the semantic search more
efficient.

We evaluated one such light explicit semantic
scheme. To that end, instead of maintaining a unique
list of semantic neighbours, each peer maintains sev-
eral lists (according to the LRU or History policy),
for example one per type of the file (audio, video,
software etc). In other terms, each type is associated
with a separate list of semantic neighbours and a peer
contacts only the neighbours who are in the relevant
list for a given search. eDonkey, as well as most of
its other competitors, associate with each file some
meta information about the file such as the name,
size, file extension and the kind of file (audio, video
etc). These meta information helps when devising
these explicit semantic schemes. In this last set of ex-
periments, we investigate the use of already available
information in most peer-to-peer file sharing systems
and Figure 5 depicts the hit ratio obtained for audio
files using both implicit and explicit semantics. These
results show that the hit ratio is impacted when main-
taining a peer profile per type of file.

0

10

20

30

40

50

60

5 10 20

Number of Semantic Neighbours

H
it

s 
fo

r 
A

u
d

io
 f

ile
s 

%

With 1 cache for all files (LRU)

One cache for Audio files (LRU)

Figure 5: Explicit versus implicit

Another important point to note is that in the im-
plicit scheme, while searching files that are in differ-
ent categories of interests, a peer might lose (e.g.,
due to pruning of lists) some semantic neighbours
just because those neighbours have no relevance to

4



the current search or interests. This can be avoided
by having separate lists for each interest group.

One could argue that the number of links main-
tained is much higher. This is true but that the im-
portant factor in terms of load is the number of neigh-
bours which are contacted on a request rather than
the number of pointers maintained on each node3. In
addition, given the fact that a peer can have num-
ber of interest categories and different peers will act
as uploaders for different categories, it is natural to
think that a peer may exhibit semantic proximity
with different peers depending on the type of infor-
mation.

4 Conclusion

In this paper, we evaluated some simple strategies
that can easily capture and exploit the semantic rela-
tionships observed between peers in peer-to-peer file
sharing systems. The main issue in semantic proxim-
ity is how to capture the semantic relationship be-
tween two peers without explicitly involving peers
themselves or structuring or grouping peers in the
overlays into a static configuration which 1) does not
evolve well as the interests of peers change and 2)
generally needs significant amount of manual inter-
vention by the users when structuring the peers.

We evaluated two different policies (LRU and His-
tory based) of maintaining semantic neighbours ac-
cording to implicit scheme and present a simple ex-
plicit scheme. As was shown both schemes produce
good results in terms of hit ratio, demonstrating that
exploiting the observed clustering between peers may
lead to improvements in the search process. One im-
portant property of such improvements is that the
approach may be used in unstructured (flooding-
based), semi-structured (super-peers-based) or struc-
tured (DHT-based) peer-to-peer file sharing systems.
We are currently investigating the implementation in
these various contexts. Future work is also needed to
evaluate these approaches in dynamic traces.

References

[1] edonkey. http://www.edonkey2000.com/index.html.

[2] Emule. http://www.emule-project.net/.

[3] Gnutella. http://www.gnutella.com.

[4] KazAa. www.kazaa.com.

[5] R. Bhagwan, S. Savage, and G. Voelker. Understand-
ing availability. In IPTPS’03, Feb. 2003.

3maintaining semantic peers does not involve a heavy
heartbeat-based scheme.

[6] M. Castro, M. Costa, and A. Rowstron. Should we
build gnutella on a structured overlay? In HotNets
2003, Boston, MA, USA, Nov 2003.

[7] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham,
and S. Shenker. Making gnutella-like p2p systems
scalable. In SIGCOMM’03, 2003.

[8] A. Crespo and H. Garcia-Molina. Semantic overlay
networks for p2p systems. Technical report, Stanford
University, 2003.

[9] F. L. Fessant, S. Handurukande, A.-M. Kermarrec,
and L. Massoulié. Clustering in peer-to-peer file shar-
ing workloads. In The 3rd International Workshop
on Peer-to-Peer Systems (IPTPS’04), 2004.

[10] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Grib-
ble, H. M. Levy, and J. Zahorjan. Measurement,
modeling, and analysis of a peer-to-peer file-sharing
workload. In SOSP’03.

[11] http://bitconjurer.org/BitTorrent/. Bittorrent.

[12] B. T. Loo, R. Huebsch, I. Stoica, and J. Heller-
stein. The case for a hybrid p2p search infrastruc-
ture. In The 3rd International Workshop on Peer-
to-Peer Systems (IPTPS’04), 2004.

[13] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker.
Search and replication in unstructured peer-to-peer
networks. In Proceedings of the 16th international
conference on Supercomputing, 2002.

[14] D. Plonka. Napster traffic measurement. Technical
report, University of Wisconsin-Madison, 2000.

[15] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems. In Middleware, 2001.

[16] S. Saroiu, K. P. Gummadi, R. Dunn, S. D. Gribble,
and H. M. Levy. An analysis of Internet content
delivery systems. In OSDI’02, Dec. 2002.

[17] S. Saroiu and S. G. P. Krishna Gummadi. A mea-
surement study of peer-to-peer file sharing systems.
In MMCN’02, Jan. 2002.

[18] S. Sen and J. Wong. Analyzing peer-to-peer traffic
across large networks. In SIGCOMM’02 Workshop
on Internet measurment, 2002.

[19] K. Sripanidkulchai, B. Maggs, and H. Zhang. Effi-
cient content location using interest-based locality in
peer-to-peer systems. In INFOCOM’03.

[20] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In SIG-
COMM 2001, San Diego, USA, Aug. 2001.

[21] S. Voulgaris, A.-M. Kermarrec, L. Massoulié, and
M. van Steen. Exploiting semantic proximity in
peer-to-peer content searching. In 10th International
Workshop on Future Trends in Distributed Comput-
ing Systems (FTDCS 2004), China, May 2004.

[22] G. Wearden. eDonkey pulls ahead in Euro-
pean P2P race. http://news.com.com/2100-1025 3-
5091230.html, 2003.

5


