
Cryptographic Protocols to Fight Sinkhole Attacks on Tree-based Routing

in Wireless Sensor Networks

Anthonis Papadimitriou

INRIA-Saclay

anthony@di.uoa.gr

Fabrice Le Fessant

INRIA-Saclay

fabrice.le fessant@inria.fr

Aline Carneiro Viana

INRIA-Saclay

aline.viana@inria.fr

Cigdem Sengul

DT Labs, TU-Berlin

cigdem.sengul@telekom.de

Abstract—This work introduces two new cryptographic pro-
tocols of different complexity and strength in limiting network
degradation caused by sinkhole attacks on tree-based routing
topologies in Wireless Sensor Networks (WSNs). The main goal
of both protocols is to provide continuous operation by improving
resilience against, rather than detection of, these attacks. Building
up resilience may prove to be more beneficial because it allows
operating (or graceful degradation) in the presence of attacks.
Furthermore, while resilience mechanisms do not dismiss de-
tection mechanisms, detection mechanisms often introduce more
complexity and so, more weaknesses to the system, which might
not justify their benefits. We provide a simulation study of
the two protocols for three different routing strategies, that
encompass typical routing strategies used in WSN. The results of
our simulation study show that our cryptographic protocols are
effective in improving resilience against sinkhole attacks, even in
the presence of some collusion.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are penetrating more and

more in our daily life. As a consequence, security has become

an important matter for these networks. Indeed, many WSN

protocols are not secured even against simple attacks. Let’s

take a simple scenario for a possible attack: a supermarket is

protected during closing hours by a WSN, where each sensor

is able to sense any movement in its neighbourhood, and report

an alarm to the sink at the center of the supermarket. A thief

can put a sensor in the neighbourhood of the supermarket, that

tells other sensors within the supermarket that it is closer to

the sink (i.e., sinkhole attack). All their messages for the sink,

especially alarms, will be routed through that sensor, that will

be able to discard alarm messages (i.e., selective forwarding

attack) and let the thief enter the supermarket.

Recent work [1], [2] has mostly focused on how such an

attack can be detected with high probability. However, attack

detection often increases the complexity of the system and

thus, increases the possibility of other attacks. Furthermore,

fault-detection mechanisms or network debuggers can also be

effected by sinkhole attacks [3]. In [3], a network debugger

is proposed, which requires periodic metric collection at the

sink. The sink decides which nodes have delivered sufficient

data and if not, infers the causes of the failures. However,

during their evaluations, the authors ran into a problem :

some nodes had a route to a node that was not the sink. The

authors validated that the network was exposed temporarily

to an extraneous node with the same ID as a node already in

the network. That node advertized itself as a sink, confusing

the network. From that point on, due to a bug in the routing

code, the network never recovered. This example shows that

ensuring built-in resilience to sink-hole attacks would be

more effective. Consequently, we propose two RESIlient and

Simple Topology-based reconfiguration protocols: RESIST-1

and RESIST-0. RESIST-1 prevents a malicious node from

modifying its advertised distance to the sink by more than

one hop, while RESIST-0 does not allow such lying at the

cost of additional complexity.

We studied the performance of RESIST-1 and RESIST-0

through simulations, for three tree-based routing protocols

that encompass different routing strategies. Our simulation

results show that our reconfiguration protocols are effective

in improving resilience against sinkhole attacks in WSNs.

Finally, we conclude with a discussion on implementation

issues, such as the use of cryptography in sensor networks,

and on the impact of collusion on our protocols.

The remainder of this paper is structured as follows. In

Section II we present the system model. In Section III, we

lay out our proposal for two simple and resilient topology-

based routing protocols. Performance results are presented in

Section IV and discussions in Section V. The Section VI

overviews the current literature. Finally, Section VII concludes

with future work.

II. PROBLEM STATEMENT

This section presents the network and the threat models,

as well as, the attack metric, the Risk Factor, used in our

simulations.

A. Network model

We consider a connected WSN consisting of N static sen-

sors randomly scattered on a geographical area, and only one

sink, each with unique IDs. All sensors are identical in terms

of computational, memory, and communication capabilities.

In order to keep the focus on the resilience analysis of our

protocols we leave the evaluation of energy consumption for

future work. Nodes do not have access to location information.

Each node or the sink is able to communicate wirelessly with

a subset of nodes (its neighbors) that are in its transmission

range, rt. We consider a large set of routing protocols relying

on tree-based topology construction [4]–[10]. The data is thus,

routed from sensor nodes to the sink through a tree rooted at

the sink. The routing tree is an aggregation of the shortest

paths from each sensor to the sink based on a cost metric,

which can represent different application requirements (e.g.,

2

cost hop count, loss, delay). In this work, the routing tree is

built by using the hop distance to the sink.

B. Threat model

We focus on sinkhole attacks launched by compromised

nodes inside the network. In our threat model, sensors cannot

lie about their identities due to the presence of cryptographic

measures [11]. In general, we assume malicious sensors are

not colluding (i.e., collaborating to increase the impact of the

attack). The impact of collusion is discussed in Section V.

We assume that public-key cryptographic primitives are

available on all sensors (refer to [12] for a survey on key

distribution in WSNs). Furthermore, recently it has also been

shown that public key infrastructure is viable for WSNs [13].

Hence, in our model, all sensors only know and trust the public

key Ksink
pub of the sink. Additionally, each sensor X has a pair

of public-private keys (KX
pub, K

X
pri) that it can use to prove

its identity. These key pairs can be generated and uploaded

offline to the sensors before the deployment. Using these key

pairs, nodes perform authentication and sign data messages.

C. Risk model

Many papers in the literature measure the strength of an

attack by the number of compromised nodes. This number

is misleading, as, for example, a few well-positioned com-

promised nodes may have a much larger impact than many

compromised nodes that are positioned badly in the network.

Consequently, in this paper, we use a new metric, called Risk

Factor [14] to measure the strength of an attack. Intuitively,

the Risk Factor is the probability that a message reaches

compromised nodes (that might drop it) on its route to the

sink, and inherently captures parameters such as: the number

of compromised sensors, their position, the density, and the

size of the network. It is computed iteratively starting from

the sink using the following formula:

NodeRiskX =

8

>

<

>

:

0 if X is the sink

p if X is malicious
P

Y ∈NX |dY <dX
NodeRiskY

‖{Y ∈NX |dY <dX}‖
otherwise,

(1)

RiskFactor =

P

X∈V
NodeRiskX

‖V ‖
(2)

We evaluated Risk Factor with different number of compro-

mised nodes using 3 different positioning strategies: (1) ring

placement at a distance equal to the transmission range of the

sink (denoted as R), (2) ring placement at a distance 1.5R and

(3) random placement. Fig. 1 illustrates the representativeness

of the Risk factor compared to “the number of compromised

nodes” For instance, the Risk Factor is able to capture that

surrounding the sink at a closer distance performs better

than random placement. Note that using “the number of

compromised nodes” the risk would increase regardless of how

these nodes are positioned. Furthermore, the majority of the

time, the risk increases more slowly or remains constant after

a constant amount of compromised nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

ri
s
k
 f

a
c
to

r

number of malicious

Evolution of Risk Factor with the number of malicious sensors

ring placement at distance R
ring placement at distance 1.5 R

random placement

Fig. 1. The Risk Factor grows very fast with the first compromised nodes,
and more slowly afterwards. A few well-positioned nodes (a ring at distance
1) can impact the network as much as hundreds of nodes randomly positioned.

III. SECURITY PROTOCOLS

To achieve higher resilience in tree-based routing proto-

cols [4]–[10], we propose two protocols. These protocols are

used at the tree reconfiguration phase triggered by the sink.

Note that we do not have special constraints on the period

between reconfigurations: it can be chosen either similar to the

current tree-based routing protocols, based on cost, or topology

vulnerability. We define a class of RESIST-h reconfiguration

protocols that allow malicious nodes to modify their advertised

distance to the sink, but no more than h hops. Based on this

definition, we introduce two protocols, RESIST-1 and RESIST-

0, which are presented in the remainder of this section. We also

describe here cryptographic operations and message contents

of the proposed protocols, but refer the reader to Section V

for an efficient way of implementing them.

A. Simple reconfiguration protocol (RESIST-1)

The reconfiguration starts by the sink sending a

Hello(epoch, tokens) message to all its neighbors, where

epoch is a strictly increasing timestamp, chosen by the sink

and tokens is a list of tokens [T0, T1, T2, ..., TR]. Essentially,
each token is a (k, epoch) pair signed by the sink, where k is

the token number:

Tk = (k, epoch)signed(Ksink
pri

) (3)

When a sensor receives a Hello message, and after ver-

ifying that the tokens are correctly signed by the sink (i.e.

verified by using the public key Ksink
pub), it does the following:

• If the epoch is new, it remembers the identity of

the node sending it (i.e., his parent), and propa-

gates the Hello message after removing the small-

est token from the list of tokens. In other words,

it receives Hello(epoch, [Tk, Tk+1, ..., TR]) but sends

Hello(epoch, [Tk+1, ..., TR]).
• If the epoch is already known, but the Hello message

advertises a shorter hop distance to the sink (i.e., con-

tains a smaller token), the node might follow different

approaches. A selfish approach would only update the

node itself, while a gossip approach would also propagate

3

a new Hello message to the neighbors. In the rest of the

paper, we follow the gossip approach.

Each sensor remembers as its parent the sensor that sent it

the smallest token signed by the sink for the most recent

epoch. Note that the token number of the smallest token is

also the hop distance to the sink. Alternatively, sensors can also

remember all the nodes that advertise the shortest distance for

a given epoch. In Section IV, we also evaluate this approach.

Sinkhole attack resilience: A compromised node can directly

forward a Hello message without dropping the first token.

Assume that the node is the first compromised node on the

branch that the Hello message travels. Then, if the compro-

mised node is at distance k from the sink, its neighbors would

believe they are at distance k too, and so they would believe

that the compromised node is at distance k − 1. Nevertheless,
the compromised node cannot pretend to be at a distance

smaller than k − 1, because it would be unable to provide

smaller tokens than Tk. Note that as the Hellomessage travels

down the tree, it might encounter other malicious nodes that

do not drop the token before forwarding the message. In this

case, each uncompromised sensor would believe to be at a

shorter distance to the sink depending on how many malicious

nodes exist before it (e.g., if the number of malicious nodes

between the sensor and the sink is 2, then it will at most

believe it is 2 hops closer to the sink than the reality). Even

if we do not have a strong bound on the deviation from the

real distance in RESIST-1 (i.e., it increases with the number

of malicious nodes on the path), this might not degrade the

performance significantly because the main impact is caused

by the malicious node closest to the sink.

B. Complex reconfiguration protocol (RESIST-0)

To provide higher resilience, we next propose a more

complex reconfiguration protocol (RESIST-0). This protocol

is inspired by a protocol used to measure availability in peer-

to-peer networks [15], where newly generated pairs of crypto-

graphic keys are diffused in the network at every round. The

sink sends a Hello(epoch, [T0, T1, ..., TR]) message, where

the generated tokens are:

Tk = ((k, epoch, K
k
pub)signed(Ksink

pri
), (K

k
pri)signed(Ksink

pri
)
), (4)

where (Kk
pub, K

k
pri) is a newly generated pair of cryptographic

keys for token k at a reconfiguration epoch. The reconfig-

uration protocol is the same as RESIST-1, except that, at

the reception of a new epoch and before choosing a sensor

Y as its parent, a sensor X challenges the sensor Y first

by sending a Challenge(k, epoch) message. Basically, this

message asks Y to prove its distance k from the sink (i.e.

that it has a copy of the token Tk). Sensor Y replies with a

message ChallengeReply, which contains:

((k, epoch, Kk
pub)signed(Ksink

pri
), (IDY , IDX)signed(Kk

pri
))

(k, epoch, Kk
pub)signed(Ksink

pri
) is the first half of the token Tk

that Y received. At the reception of the ChallengeReply

message and using the public key Ksink
pub , node X can first

verify if the token k was correctly signed by the sink. In

addition, node X recovers the public key of the token k, Kk
pub.

Then, it can decrypt the second part of the ChallengeReply

message, which was encrypted by the private key of token

k, Kk
pri. Node X can thus verify if its identity, IDX , was

correctly signed by node Y . If so, it believes in IDY and in

the Y ’s advertised distance k from the sink.

Sinkhole attack resilience: Since a sensor can sign the

second part of the ChallengeReply message, if and only if

it knows the private key for the token k, it is impossible for

a compromised sensor (without collusion) to correctly reply

to a Challenge. Furthermore, compromised nodes cannot

even carry out the attack that we described for RESIST-

1. Essentially, not dropping the smallest token would fail,

because they would not be able to respond to the Challenge

for the shorter hop count. Hence, RESIST-0 provides strong

resilience against sinkhole attacks. We discuss the impact of

collusion on our protocols in Section V.

IV. PERFORMANCE EVALUATION

The goal of our evaluation is to measure the amount of

resilience obtained by RESIST protocols described in Sec-

tion III. To this end, we present performance results under

malicious attacks using three baseline routing protocols, de-

scribed hereafter. The experiments were run in a discrete

event-based simulator implemented in Java. As we are only

interested in a RESIST’s algorithmic evaluation, our simulator

uses a simplified MAC layer, where neither message losses,

nor collisions are considered. The correct performance of the

presented schemes are independent of the order of message

arrival. Furthermore, Hello message losses are typically han-

dled by tree generation algorithms. On the other hand, lost

Challenge or ChallengeReply might delay tree generation

but do not jeopardize resilience.

A. Simulation Setup

This section describes the three baseline protocols and our

simulation setup. We consider a data collection application,

where each sensor only sends data (e.g., measurements) to

the sink. The routing topology to reach the sink is regularly

reconfigured [10]. Malicious nodes do not generate data and

they drop every received message with probability p = 1.
In our simulator, we implemented three baseline routing

protocols: FTree, RRobin and RWalk. We studied the perfor-

mance of these protocols in networks when resilient reconfig-

uration schemes are used (RESIST-1 and RESIST-0) and not

used (vulnerable case). In addition, compromised nodes try to

attract higher volumes of traffic by advertising shorter paths.

In FTree, the routing tree is built once at each topology

reconfiguration phase. RRobin differs from FTree as each sen-

sor computes a set of alternative parents during the topology

reconfiguration. This set includes the neighbor that sent the

first Hello message and any neighbor that sent a Hello

message with a hop count smaller or equal to the first neighbor.

Each time a sensor has to send a message, it selects one

parent from this set in a round robin way. In RWalk protocol,

each sensor makes a random decision about forwarding a

message either over the routing tree (computed as in FTree) or

4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.90.80.70.60.50.40.30.20.10.0

R
e

c
e

iv
e

 R
a

ti
o

Risk Factor (buckets)

vulnerable
RESIST-1
RESIST-0

(a) FTree routing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.90.80.70.60.50.40.30.20.10.0

R
e

c
e

iv
e

 R
a

ti
o

Risk Factor (buckets)

vulnerable
RESIST-1
RESIST-0

(b) RRobin routing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.90.80.70.60.50.40.30.20.10.0

R
e

c
e

iv
e

 R
a

ti
o

Risk Factor (buckets)

vulnerable
RESIST-1
RESIST-0

(c) RWalk routing

Fig. 2. Performance gain for different routing protocols: (a) Fixed Tree, (b) Round-Robin with, (c) Random-Walk (n = 1)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.90.80.70.60.50.40.30.20.10.0

R
e
c
e
iv

e
 R

a
ti
o

Risk Factor (buckets)

RESIST-0(MP)
RESIST-0(no MP)

RESIST-1(MP)
RESIST-1(no MP)

Vulnerable(MP)
Vulnerable(no MP)

Fig. 3. Using two paths (MP) instead of one increases the overall performance
of the different strategies.

forwarding it to a randomly selected neighbor. If the message

is not sent over the tree, it follows a n-hop random walk and

after n hops, it is again forwarded over the tree. The goal of

both RRobin and RWalk protocols is to allow escaping regions

that may be severely affected by malicious nodes. In all our

experiments with RWalk, we use n = 1.
We generated many random topologies, progressively filling

them with malicious sensors. The space of topologies was

divided in 10 buckets, where buckets 0, 1, etc. contain the

topologies whose risk factor is respectively in [0,0.1), [0.1,

0.2), etc. At each step, the risk factor was evaluated and

the topology added to the corresponding bucket, until every

bucket had at least 100 topologies. Using these topologies, the

performance gain was computed as the ratio of messages that

actually reach the sink compared to the number of messages

that should reach the sink if no sensor were compromised.

B. Resilient Reconfiguration Protocols

Our results show that RESIST-0 achieves significant per-

formance gain for all routing protocols (see Fig. 2). For both

vulnerable and RESIST-1 cases, the decrease of the receive

ratio is roughly exponential, whereas for RESIST-0, it has a

better, linear decrease, as it does not allow nodes to lie about

their distance to the sink. Fig. 2 confirms that when malicious

sensors are able to lie, they can attract more network traffic

and thus, incur a much higher impact in the WSN. The linear

decrease in performance of RESIST-0 seems to be the upper

bound of the performance we can obtain by only addressing

the sinkhole attacks. To get better results, one must also

fight selective forwarding attacks. An attractive approach to

decrease the impact of selective-forwarding attacks is to send

each message through multiple paths to the sink. However,

Fig. 3 shows that the improvement from multi-path routing

is limited. In our simulations, the performance improvements

were limited to 5% to 10% when two paths per message was

used (one FTree path and another RRobin path), for different

resiliency levels. In both RESIST-1 and the vulnerable cases,

using more than two paths would not be sufficient to reach

the performance of RESIST-0.

C. Routing Protocols Comparison

We next focus on comparing the performance of the three

routing protocols using RESIST-0 (see Fig. 4(a)). Note that

even if sinkhole attacks are avoided, malicious nodes can still

perform selective forwarding attacks. Fig. 4(a) clearly shows

that FTree and RRobin outperform RWalk. This is expected as

in RWalk, the average path length that each message travels to

the sink is longer. This consequently increases the probability

of meeting a malicious node on the path. Further experimen-

tation on RWalk also showed that the protocol performance is

inversely proportional to n. This actually means that the best

case for n-hop random walk is achieved when n = 0, in which

case RWalk is equivalent to FTree routing.

Fig. 4(a) also shows that FTree and RRobin have similar per-

formance. This is surprising since, intuitively, the performance

of RRobin should be better compared to FTree. Analyzing the

results, we observe that, as expected, for sensors, which have

malicious parents, RRobin improves the performance by letting

these nodes periodically send to alternative parents. However,

this does not necessarily improve overall performance as the

reverse case also holds: sensor nodes with good parents on the

routing tree use malicious nodes as parents in a round robin

fashion. Consequently, any gain from RRobin is neutralized

by putting sensor nodes with good parents at risk.

To understand the effect of malicious nodes on the protocol

behavior better, we divide the network into 100 equal zones

and define the failure threshold of a zone as the percentage

of data sent by the zone that needs to be dropped to qualify

5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.90.80.70.60.50.40.30.20.10.0

R
e
c
e
iv

e
 R

a
ti
o

Risk Factor (buckets)

FTree
RRobin
RWalk

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.90.80.70.60.50.40.30.20.10.0

N
u
m

b
e
r

o
f
Z

o
n
e
s
 b

e
lo

w
 T

h
re

s
h
o
ld

Risk Factor (buckets)

FTree
RRobin
RWalk

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.90.80.70.60.50.40.30.20.10.0

R
e
c
e
iv

e
 R

a
ti
o
 o

f
A

ff
e
c
te

d
 Z

o
n
e
s

Risk Factor (buckets)

FTree
RRobin
RWalk

(c)

Fig. 4. RESIST-0 performance evaluation: (a) Comparative performance of routing protocols. (b) Number of severely affected zones in the network (threshold
=60%). (c) Received ratio of affected zones in the network.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.90.80.70.60.50.40.30.20.10.0

R
e
c
e
iv

e
 R

a
ti
o

Risk Factor (buckets)

-Coll/RESIST-0
+Coll/RESIST-0
+Coll/RESIST-1
-Coll/RESIST-1
-Coll/vulnerable

Fig. 5. In the presence of short range collusion (+Coll), RESIST-0 still
performs much better than vulnerable routing without collusion. RESIST-1 is
not affected, since the default malicious behavior is similar to collusion.

the zone as poorly monitored. In reality, this threshold would

depend on the criticality of the sensor network application. We

set the failure threshold as 60% in our experiments. Fig. 4(b)

illustrates how many zones fell below the failure threshold

for each risk factor bucket and routing protocol. Initially,

the number of zones below failure threshold is higher for

FTree than RRobin. Coupled with the fact that both protocols

share the same receive ratio (see Fig. 4(c)), this means that

RRobin just diffuses the effect of malicious nodes to more

zones, so that fewer zones actually fail. However, as the

risk factor increases, the number of zones below threshold

increases beyond FTree due to the reverse case appearing more

often. Essentially, increasing the failure threshold moves the

shift point to the right. Nevertheless, although the number of

affected zones is higher for RRobin, the average received data

ratio per affected zone still remains higher than FTree. On the

other hand, the number of failed zones in RWalk is always the

highest due to its overall poor performance.

V. DISCUSSION

We discuss here the cost of using cryptographic primitives

in WSNs and the impact of collusion on RESIST protocols.

A. Reducing the Cost of Cryptography for Sensors

The main cost of our RESIST protocols is the size of

Hello messages, which carry multiple tokens that contain

cryptographic values. Although, this might strain the signif-

icantly resource-constrained WSNs, we believe this problem

can be avoided by an efficient way of implementing tokens.

First, Elliptic Curves Cryptography (ECC) keys can be used

to reduce the size of messages. Signatures and keys of length

110 bits would be sufficient, since ECC keys are as efficient

as much longer RSA keys. Recently, [13] shows that ECC can

be implemented at a very low cost in WSN.

Second, in [16] one-way hash functions are used so that

a token Tk+1 in RESIST-1 can be computed from a to-

ken Tk. Using this method, Hello messages need only to

contain the first and the last token, signed by the sink,

i.e. Hello(Hk(T0), (epoch, HD(T0))signed(Ksink
pri

)), where d

is the diameter of the network. On receiving this message, a

sensor can find its hop-count distance k by hashing D − k

times the token Hk(T0) until it reaches HD(T0). Moreover,

as it does not know T0, and H is a one-way function, it

cannot compute Hk−1(T0). The same idea could be used for

RESIST-0: in this case, the public keys Kk
pub and KD

pub only

are propagated. Kk
pub is used to verify the challenge, and also

to generate the new ECC key Kk+1
pri (with the cost of a modulo

operation), from which the public key Kk+1
pub is then generated

(with the cost of an exponentiation operation), and sent to the

neighbours. The chain can be verified by iterating these two

operations until KD
pub is reached.

B. The Impact of Collusion on RESIST Protocols

To be able to implement sinkhole attacks in the presence

of RESIST protocols, malicious sensors need to collude, to

share good tokens (i.e., a token that can prove a short distance

to the sink) they are able to collect during reconfigurations.

Thus, RESIST protocols limit the power of collusion attacks

to the closest distance an attacker can get to the sink. Hence,

malicious nodes residing at the border of the network, as in

our initial scenario in the introduction, would not be able to

disrupt it.

Collusion is also limited by the communication capabilities

of malicious sensors: in Fig. 5, we simulated the impact of

collusion when colluding sensors have normal radio ranges

and are distributed randomly on the network area. In our

simulations, malicious nodes exchange tokens so that they

all appear the same distance to the sink (i.e., the distance of

the malicious node that is closest to the sink). Our results

6

show that the performance of RESIST-1 is not affected by

the presence of colluding nodes. This was expected, as the

collusion among malicious nodes do not necessarily create a

higher impact on the structure of the tree. On the other hand,

in RESIST-0, sharing of tokens enables replying challenges

for shorter distances and hence, has an effect on performance.

Finally, the most dreadful attack would be a malicious

sensor, close to the sink with a long radio range, allowing

it to propagate a very good token to malicious sensors far

from the sink. However, collusion in this case might not

cause a significantly higher degradation in performance, as

the dominant impact already comes from the malicious node

closest to the sink.

VI. RELATED WORK

Security has been attracting the attention of many re-

searchers [17], since it is vital to guarantee correct operation

of sensor protocols. The main conclusion of recent studies on

secure routing is that updating current protocols with security

extensions is not sufficient and that routing protocols should

be designed from scratch with security in mind.

This paper focuses particularly on sinkhole and selective

forwarding attacks. Most other approaches against these at-

tacks revolves around detection of malicious nodes [1], [2],

[16]: multi-hop acknowledgments are used in [2], to detect

and blacklist nodes that perform selective forwarding attacks.

However, in addition to its cost, the proposed scheme requires

geographical location information and strict synchronization.

In [1], a learning technique based on neural networks is used

to predict the sensor measurements, and a reputation scheme

is used to mark nodes as faulty if their reports are too different

from predictions. In [16], a protocol similar to RESIST-1 is

proposed, but without strong cryptography. As a consequence,

it requires an additional protocol to detect malicious sensors

(reports are vulnerable to falsification) and to blacklist nodes

(through a complex messaging mechanism).

An interesting analysis of DDoS attacks in sensor networks,

which also takes into account different network parameters and

some counter measures, is presented in [18]. While their work

covers TCP JellyFish and selective-forwarding attacks, we

focus on sinkhole attacks. Moreover, our Risk Factor metric

captures more network characteristics.

An intuitive approach against selective forwarding attacks

is to use multipath routing [19], [20]. However, such a

protocol dramatically increases communication overhead as

the redundancy of paths increases. In addition, these paths

eventually converge to a few nodes surrounding the base

station where malicious nodes can have a dreadful impact.

Indeed, our simulation results show that the efficiency of this

approach is limited, as confirmed by [18].

Trust-based systems [21], [22] are interesting approaches

to deal with selective forwarding attacks. In these systems,

interactions between sensors are used for trust level computa-

tion. Such systems are, however, often complex. We believe

resilience, as provided by our protocols, is a better choice. As

in [23], RESIST could use trust levels in the choice of the set

of nodes to be considered during the round robin procedure.

VII. CONCLUSION

We presented two cryptographic reconfiguration protocols

that increase the resilience of the network in the presence

of sinkhole attacks: RESIST-1 prevents malicious nodes from

changing their advertised distance to the sink more than

one hop; RESIST-0 completely stops malicious nodes from

lying about their distance, but is more expensive to use. Our

performance evaluation confirmed the higher resilience of our

protocols, even in the presence of some collusion for three ba-

sic routing protocols. We discussed the implementation issues

of our protocols, showing that Elliptic Curves Cryptography

(ECC) provides an interesting way to encode the protocol

in significantly short messages. Finally, collusion between

compromised sensors, even if possible, has limited impact on

the real performance of our protocols.

REFERENCES

[1] P. Mukherjee and S. Sen, “Using learned data patterns to detect
malicious nodes in sensor networks,” in ICDCN, 2008.

[2] B. Yu and B. Xao, “Detecting selective forwarding attacks in wireless
sensor networks,” in IEEE IPDPS, 2006.

[3] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin,
“Sympathy for the sensor network debugger,” in Sensys, Nov. 2005.

[4] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a
scalable and robust communication paradigm for sensor networks,” in
ACM MOBICOM, 2000.

[5] F. Ye, A. Chen, S. Lu, and L. Zhang, “Gradient broadcast: A robust,
long-live large sensor network,” UCLA, Tech. Rep., 2001.

[6] ——, “A scalable solution to minimum cost forwarding in large sensor
networks,” in Conf. on Computer Communications and Networks, 2001.

[7] U. Cetintemel, A. Flinders, and Y. Sun, “Power-efficient data dissemi-
nation in wireless sensor networks,” in ACM MobiDE, 2003.

[8] B. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data
aggregation in wireless sensor networks,” in IEEE ICDCS, 2002.

[9] Y. J. Zhao, R. Govindan, and D. Estrin, “Residual energy scans for
monitoring wireless sensor networks,” IEEE WCNC, 2002.

[10] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: a
Tiny Aggregation Service for Ad-Hoc Sensor Networks,” OSR, 2002.

[11] L. B. Oliveira, D. Aranha, E. Morais, F. Daguano, J. Lpez, and R. Dahab,
“Identity-based encryption for sensor networks,” in PERCOM, 2007.

[12] S. A. amtepe and B. Yener, “Key distribution mechanisms for wireless
sensor networks: a survey,” IEEE/ACM Trans. on Networking, 2005.

[13] D. J. Malan, M. Welsh, and M. D. Smith, “Implementing public-key
infrastructure for sensor networks,” ACM Trans. Sen. Netw., 2008.

[14] A. Papadimitriou, F. Le Fessant, A. C. Viana, and C. Sengul, “Fighting
sinkhole attacks in tree-based routing topologies,” INRIA, Tech. Rep.
RR-6811, 2008.

[15] F. Le Fessant, C. Sengul, and A.-M. Kermarrec, “Pace-maker: Tracking
peer availability in large networks,” INRIA, Tech. Rep. RR-6594, 2008.

[16] S.-B. Lee and Y.-H. Choi, “A secure alternate path routing in sensor
networks,” Computer Communications, Elsevier, vol. 30, 2006.

[17] W. Yu and K. Liu, “Attack-resistant cooperation stimulation in au-
tonomous ad hoc networks,” IEEE/ACM Trans. on Networking, 2005.

[18] I. Aad, J.-P. Hubaux, and E. W. Knightly, “Impact of denial of service
attacks on ad hoc networks,” IEEE/ACM Trans. on Networking, 2008.

[19] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks:
Attacks and countermeasures,” in 1st IEEE Workshop on Sensor Network

Protocols and Applications (SNPA), 2003.
[20] S. M. Jing Deng, Richard Han, “Insens: Intrusion-tolerant routing in

wireless sensor networks,” in IEEE ICDCS, 2003.
[21] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating routing misbehavior

in mobile ad hoc networks,” in ACM MOBICOM, 2000.
[22] Y. Sun, Z. Han, W. Yu, and K. J. R. Liu, “A trust evaluation framework in

distributed networks: Vulnerability analysis and defense against attacks,”
in IEEE INFOCOM, 2007.

[23] Z. Liu, A. Joy, and R. Thompson, “A dynamic trust model for mobile
ad hoc networks,” in Future Trends of Dist. Computing Systems, 2004.

