
Optimizing Peer-to-Peer Backup using Lifetime
Estimations

Samuel Bernard
samuel.bernard@lip6.fr

INRIA Saclay/UPMC LIP6, France

Fabrice Le Fessant
fabrice.le fessant@inria.fr

INRIA Saclay – Île de France, France

ABSTRACT
In this paper, we study the viability of a peer-to-peer backup
system on nowadays internet connections. In particular, we
show that peer lifetime estimation can be used to reduce the
maintenance cost of peer-to-peer backup. Previous studies
[5] have shown that lifetimes in a peer-to-peer system follow
a Pareto distribution. Consequently, peers can be sorted
on their expected lifetimes, depending only on the length
of their history in the system. By carefully selecting the
peers on which backup data is stored, repairing cost can be
highly reduced for long-term backup users, while it is still
acceptable for new users. The efficiency of this technique is
evaluated through simulations of a state-of-the-art peer-to-
peer backup system.

1. INTRODUCTION
Backup of data has never been as important as in today’s
life. The presence of computers (digital cameras, organizers,
etc.) in every part of our lives has considerably increased
the quantity of personal digital data. In the same way, com-
panies are now highly dependent on vital information stored
on their computers. As a consequence, efficient techniques
to prevent the loss of these data have to be used on every
computer.

Yet, few computers are correctly configured to protect their
data. Traditional backups on external supports are very
common, but also unexpectedly very inefficient: 20% of
nightly backups on tapes fail, while 40% are unusable af-
terwards; systems are not well configured, or just badly
maintained. Few people know that backups on CD-R are
short term (two years). Finally, all these solutions are very
slow, and require additional hardware or manual interven-
tions, and do not protect against thieves, fires or floods.
Service Storage Providers (SSP) have received a lot of atten-
tion lately, with the cloud-computing wave, but still suffer
from other risks, such as bankrupcies, internal failures (in
Hotmail and Gmail) or lack of security.

Therefore, our long term objective is to provide a new alter-
native backup system, free, efficient, reliable, yet still easy-
to-use, to help people protect data on their personal com-
puters. Our system would be based on the exchange of free
disk space between its members. To lower the cost and to
bring a high resilience to faults, it has to be decentralized
and to work in a peer-to-peer (P2P) way. In the literature,
there are already some P2P backup systems. But most of
them are still in prototype phase and has not yet been tested
in acceptable conditions. The other ones are too restrictive
and do not offer the conditions we want. Before building a
complete system, we want to simulate such systems in order
to know what their viability is, based on common properties
of already designed systems.

Our contributions.In this paper we present the general
description of a backup system and the specifications needed
to estimate its viability. Then we describe our simulations
and analyse their results. The contributions are twice. We
prove the viability of a general peer-to-peer backup system
and we introduce a new criteria, the age, to estimate the
reliability of a peer.

2. SPECIFICATIONS
In this section, we introduce the general model and the basic
assumptions for this work. We also describe the behavior of
a state-of-the-art peer-to-peer backup system.

2.1 Model
We consider a large-scale network (in the order of thousands
of computers) composed of nodes (or peers), connected by
an underlying communication medium, typically IP. In this
network, we assume full connectivity between peers, i.e. any
peer can communicate with any other peer. This can usually
be done by relaying the communications for firewalled peers,
and we will not discuss it further.

Peers in the network have some disk space, divided between
data that they need to backup and free disk space that they
can share with other peers.

Studies of real peer-to-peer file-sharing networks [5, 16, 23]
have shown that the lifetime of peers in these systems is
highly correlated to the length of their presence in the sys-
tem. In other words, the longer a peer has been in the sys-
tem, the longer it is expected to stay in the system. We as-
sume that this property will also be observed in peer-to-peer



backup systems, especially as peers are likely to participate
more if the safety of their data is at stake.

To take this into account in our system, we assume the exis-
tence of a secure monitoring protocol for peer availability[17,
14]: any peer can query the availability of any other peer for
a given period of time, for example the last 90 days.

We assume that peers have enough computation resources to
run all the parts of the backup system. Indeed, this paper
focuses on optimizing the bandwidth used by the backup
system, and not on optimizing the computation power, as
the bandwidth is often the most limitating resource for home
users. Consequently, we do not focus on the confidentiality
of data: standard cryptography can be used to ensure data
confidentiality, for example by encrypting data before it is
used by the backup system.

Finally, we assume that the backup system uses erasure
codes, such as Reed-Solomon[19], instead of simple repli-
cation to increase the redundancy of the backup. With such
codes, for each set of k blocks of data, the system gener-
ates m blocks of correcting codes. These n = k + m blocks
are then stored in the system. To get back the data, any k

blocks from the n final blocks can be used. As an example,
if k = 128 and m = 128, the system will store the data
on 256 different nodes using twice the initial storage, but
supporting until 128 node failures without losing any data.
With replication, using twice the storage would mean that
the data is only replicated twice, and so data might be lost
after only two failures.

2.2 Description of the Backup System
A peer-to-peer backup system can be divided into three main
tasks:

Backup of data : how the data is moved from the com-
puter to the network

Restoration of data : how the data is moved from the
network back to the computer

Maintenance of data : how the data is preserved in the
network

In the following, we describe these three tasks in more de-
tails. Some of these details might differ in different systems,
but this description can easily be adapted to most peer-to-
peer backup systems.

2.2.1 Backup of data
During the backup task, new data (either the content of
complete files or the diffs between versions) is collected on
the file-system, and is stored in a single file (archive). A
new archive is created when the previous one reaches a given
size. Usually, meta-data is stored in a different archive, with
a better redundancy, to speed up the restoration task. For
confidentiality, data in each archive can be encrypted using
a session key.

Each archive is splitted in k blocks, and n = k + m new
blocks are created. With Reed-Solomon, the k first blocks

are the original ones, but these blocks might be different
from the original ones in other coding systems. The n blocks
are then uploaded to n different peers in the system. If
the backup system contains a direct exchange mechanism,
these n partners will be allowed to store one or more blocks
of data on the peer in exchange for the space they have
provided. Some systems might prefer a more global policy
of fairness, where space is exchanged globally (see [7] for
example) instead of between partners.

Finally, a master block is created. It contains the list of
peers on which data has been stored, the list of archives, in
particular the ones containing meta-data, and session keys,
encrypted with the user public key (and consequently, only
accessible using the user personal private key). The master
block is then uploaded to the network, for example to all the
partners storing the peer’s data or to a DHT.

2.2.2 Restoration of data
The restoration task is done in the exact opposite order of
the backup task. The master block is first retrieved from the
network, for example using a flooding request or a query to
a DHT. Meta-data archives are then downloaded to build an
index of all the files stored in the backup. These two steps
are only needed if the local copy of this information stored
on the user computer has been lost. The data archives are
then downloaded to restore the files on the computer, using
the deciphered session keys to decrypt the files if needed.

To download an archive, the peer must reach at least k of its
partners for that archive. Once k blocks have been down-
loaded, the k original blocks are decoded from these k blocks,
and the content of the archive becomes available.

2.2.3 Maintenance of data
Churn is a well known problem in peer-to-peer systems:
peers participating in the network are not connected all the
time, and can decide to leave the network definitively, for
example if they are not satisfied by the quality of service
and they rather use another software.

As a consequence of churn, all blocks are not always avail-
able, and they might completely disappear when a peer de-
cides to leave the network. In backup systems, contrary
to distributed file-systems[4], availability is less important
than durability: if there is a trade-off between speed and
security, the users are likely to prefer security, i.e. a better
guarrantee to be able to retrieve their files, even if it takes
more time. Therefore, in this paper, we are not interested
in the instantaneous availability of the blocks, but only in
their durability.

The maintenance of the backup is the perpetual task of re-
placing the blocks which have disappeared from the network.
Since a peer cannot know if another peer that it cannot con-
nect, will come back in the network or not, a time threshold
is used: if a peer could not be connected during the thresh-
old period, it is considered that the peer has definitively left
the system and the blocks it was supposed to store have
disappeared.

A repair threshold k′ is usually defined, to decide when a
repair operation should be triggered. The repair threshold



specifies the minimal number of blocks that should be visible
in the system. If fewer blocks are visible in the system, more
failures could prevent a peer from recovering its data and
thus its backup would be useless.

In this paper, we assume that, to replace d blocks that have
disappeared from the network for a given archive (when
n−d < k′), the peer must first download k blocks to be able
to decode the original data. It can then re-encode either the
missing blocks, or new blocks. This is a worst-case choice,
as alternative coding systems[8, 9] have been proposed to re-
duce the number of blocks needed to replace missing blocks.
Finally, the peer must upload the new blocks to new partners
(or to current partners but for other archives) and update
the corresponding meta-data.

2.2.4 Evaluation of Maintenance Cost
From the previous description, we can evaluate the cost of
maintenance of one archive with the following formula:

∆download + ∆decoding + ∆encoding + ∆upload + ∆metadata

With recent computers, computation time for encoding and
decoding is negligible compared to transfers on the network.
In particular, DSL connections are usually asymmetric, with
a good download bandwidth and a limited upload band-
width. Finally, updating the meta-data is fast, as the peer
just needs to upload the descriptors for the new partners,
if any. Consequently, the cost of repair can be simplified to
the download of k blocks and the download of d blocks:

∆repair = ∆download + ∆upload

We set the following parameters for our backup system:

Parameter Value
Archive Size 128 MB
k (initial blocks) 128
m (added blocks) 128

If we estimate the bandwidth of a DSL connection to 32
kB/s for upload, and 256 kB/s for download, we obtain
∆download > 512s and ∆upload > d×32. Consequently, with
d < 128, a total repair time should last 69+8 = 77 minutes,
most of which is taken by the upload of regenerated blocks.
It means that no more than 20 repair operations should be
triggered per day. Since the network bandwidth is shared
with other applications, and a user might want to backup
many archives (one gigabyte of data is 8 archives of 128
MB), the system becomes really usable on a daily basis only
if the number of repairs for one archive is much lower. For
example, if we want to limit the cost to one repair per day,
with 32 archives (4 GB of data), the repair rate should be
less than one per month approximatively. Of course, this is
a worst-case example, modern DSL connections (in France)
are at least four times faster, and FTTH connections are
even faster.

In this paper, we show that it is possible to decrease this
maintenance cost for daily users of such a system, by bet-
ter choosing on which peers the data is stored. Our choice
heuristics uses the age of peers to estimate their stability.

In the following, we describe the simulations we made to
evaluate the efficiency of our scheme.

3. SIMULATIONS
3.1 Simulation Context
To prove that an availability-aware scheme is efficient for
peer-to-peer backup, we simulated a simple protocol using
the PeerSim[12] simulator, a peer-to-peer simulator written
and extensible in Java.

Our simulations are round-based: in a round, each peer is
given the opportunity to execute some code and interact
with some other peers; execution is sequential, so the code
for one peer is always executed before or after the code for
another peer, never concurrently, but the order of peers is
chosen randomly at each round.

In our simulations, each round represents one hour. Indeed,
we are not interested in small events, such as the messages
which are sent or short-term disconnections. Instead, we
focus on longer events, such as long-term peer disconnec-
tions and repair operations. One hour is indeed close to the
approximation we did in the previous section of the time
needed for a long repair (128 blocks in 77 minutes). Still, it
is important to notice that repair operations do not need to
be limited to one hour, since the critical part is the download
of n blocks, taking usually around 8 minutes when done ag-
gressively, while the upload of generated blocks can be done
later as new partners become available. Finally, such a long
duration per round allows us to simulate the system over a
longer period, such as a few years, which is quite important
for a long-term backup system.

To simulate a peer-to-peer backup system, we first made
some assumptions:

Independence All departures, arrivals, disconnections and
reconnections of nodes are strictly independent. This
property was verified experimentally[2] on real peer-
to-peer systems.

Fidelity A node is less likely to quit the system when it has
been in the system for a long time [5, 16, 23]. This is
the key property as it gives us a good criteria for the
selection of partners. A node is more likely to exchange
blocks of data with nodes which are as stable or more
stable than it is.

Moreover we do not consider the existence of free-riders in
this work, for the sake of simplicity. Yet, a peer does not rely
completely on the system. It chooses his partners, evaluates
them and is responsible for the maintenance of its backup.
This design allows peers to completely monitor their backup
and to choose different strategies independently, such as dif-
ferent parameters for repair thresholds. Moreover, peers
only rely on the system for storing their blocks, and not to
do complex tasks, such as repairs, which is safer approach. If
a peer deletes some data, or is disconnected for a long time,
it should still be able to recover its data. The time needed
for recovery depends of the repairs rate, and the results are
presented in section 4.



3.2 Simulated Protocol
In this subsection, we describe the protocol that we imple-
mented in our simulator, in particular, during a repair op-
eration. As written in section 2.2, it can be seen as a simple
extension of existing protocols, such as [15]. We consider
only one data archive per peer, the results can be trivially
extended to the case of multiple archives.

When a node wants to store blocks on the peer-to-peer net-
work, it creates a pool of possible partners, i.e. peers that
do not yet store blocks for the same archive. To enter this
pool, both peers must agree on their partnership, using an
acceptation function that will be specified later. Once the
pool is big enough, the peer can choose the d partners it
needs to store the new blocks, and upload the data. Nodes
are selected according to their stability. Because this sta-
bility cannot be guessed, the protocol uses the ages of the
peers in the system to sort them: the longer a node has been
in the system, the more stable it will be considered.

The acceptation function is used by peer p1 to choose whether
a partnership can be started with peer p2. In our simula-
tions, we took the following acceptation function:

f(p1, p2) = min

„

L − (min(s1, L) − min(s2, L)) + 1

L
, 1

«

In this function, s1 and s2 are the estimations of the stability
of both peers, i.e. the number of rounds since each peer first
connected to the system. If some peers have an age greater
than L, only the L part will be considered. We chose 90
days for L in our simulations, as we think it is a long enough
period to consider a peer stable, and peers which have been
in the system for longer times are not much different.

The result of the acceptation function is the probability for
peer p1 to accept p2 as partners. We can notice the following
properties:

The result is never zero, and actually, its minimum is
1

L
. Indeed, we want that the probability to be accepted

as a partner is never nul, even for newcomers in the
system.

The result is always one if peer p2 is older than peer p1.
Indeed, peers should always accept older peers as part-
ners.

The function is not symmetric: the probability for p1

to accept p2 is different from the probability for p2

to accept p1, unless both peers are older than L.

Then during each round, every peer monitors its partners,
i.e. checks whether they are online and have its data (see
[18] for proofs of storage). If the number of partners for an
archive is below a threshold, the peer will trigger a repair to
replace the missing partners.

In our simulation, the initial step, when initial blocks are
uploaded for the first time to the network, is seen as a repair
where d = 256. A peer is not considered as included in the
network until that first operation finishes.

 0.1

 1

 10

 130  140  150  160  170  180A
ve

ra
ge

 n
um

be
r 

of
 r

ep
ai

r 
do

ne
 p

er
 1

00
0 

pe
er

s

Limit before repair

Repairs by Threshold

Newcomers
Young peers

Old peers
Elder peers

Figure 1: Average rate of repairs for the four categories

of peers depending of the repair threshold.

3.3 Profiles of Peers
All the peers do not have the same behaviour in our system.
Some peers are very stable and do not disconnect very often.
Other peers are unavailable most of the time and are highly
likely to quit the system early, consequently removing the
blocks of their partners from the network.

In order to simulate this heterogeneity of behaviors, we have
classified the peers into different profiles. A profile is a class
of peers sharing globally the same behavior. For instance,
in our simulation, there is a profile for very stable nodes,
another one for very unstable nodes, etc.

In this paper, we are interested in making the system in-
expensive for peers in the stable profiles, while making it a
little more expensive for newcomers, who have to prove their
stability to really benefit from such a system.

4. EVALUATION AND RESULTS
We first specify the parameters used in our simulations, and
then, we present and discuss the results.

4.1 Parameters
In our simulations, we have used the following parameters:

• After a short growing phase, the number of peers in
the system is 25,000. Each peer leaving the system is
immediatly replaced, and its blocks are immediatly re-
moved from its partners. We plan to investigate a more
realistic approach in future work, where data would be
removed only after a grace period ranging between one
and several weeks.

• We only consider one archive per peer, with k = 128
original blocks and m = 128 redundancy blocks, thus
n = 256 total blocks. However, we claim that these re-
sults should scale linearly when the number of archives
of a peer is increasing, since they can be handled in-
dependently.

• We make the threshold before repair vary between 132
and 180, focusing later on the value 148.



 0

 0.5

 1

 1.5

 2

 2.5

 3

 130  140  150  160  170  180  190

A
ve

ra
ge

 n
um

be
r 

of
 d

at
a 

lo
st

 p
er

 1
00

0 
pe

er
s

Limit before repair

Archives Lost by Threshold

Newcomers
Young peers

Old peers
Elder peers

Figure 2: Average rate of data lost for the four categories

of peers depending of the repair threshold

• A peer provides storage for at most 384 blocks in to-
tal to its partners: quota = 384. It means that a
peer should provide three folds of free storage what it
plans to backup in the system. We plan to investigate
smaller quota in future work.

• We simulate 50,000 rounds which is approximately 5
years and half.

Note that, although our simulations are limited to 25,000
peers and one archive, results should the same for bigger
systems and more archives, as peers are likely to aggregate
into clusters or cliques, where all peers are partners for the
other peers of the cluster, and pools for an archive are filled
by partners for other archives.

4.1.1 Profiles
Each peer belongs to a profile and it cannot change during
the simulation. A peer cannot know to which profile an
other peer belongs to. A profile specifies different properties
for a peer. Currently, there are two properties, the peer’s
life expectancy, which is how many rounds it will stay in the
system, and its availability, which is the percentage of time
it will be online. We use four different profiles, in different
proportions in the system for our simulations. They are
described in the following table:

Profile Proportion Life expectancy Availability

Durable 10% unlimited 95%
Stable 25% 1.5 - 3.5 years 87%

Unstable 30% 3 - 18 months 75%
Erratic 35% 1 - 3 months 33%

In short, around a third of the peers are stable and should
suit to the backup, another third are less stable and could
cause some problems and the last third is too erratic to
be really usable. The question we ask is if the unstable
peers can prevent stable ones from achieving good backup
performances (in number of repairs).

We claim that this setting is a realistic one. To the best
of our knowledge, no peer-to-peer backup system is largely

 1

 10

 100

 1000

 0  500  1000  1500  2000

C
um

ul
at

iv
e 

nu
m

be
r 

of
 r

ep
ai

rs

Days

Cumulative number of repairs for Observers

1 hour old
1 day old

1 week old
1 month old

3 months old

Figure 3: Total number of repairs done by observers

deployed on the Internet, so no traces of user’s behaviors are
available. Therefore, to create the previous profiles, we used
the result of studies on peer-to-peer file-sharing systems [2].
Those result are too pessimistic to create a reliable backup
system, so we modified them a little to be more optimistic.
However, we kept a large part of unstable peers in order
to still keep a pessimistic approach. We claim that this
approach is the most realistic one, as users in peer-to-peer
file-sharing networks have an incentive to disconnect early
(not to be caught by the police), whereas users in peer-to-
peer backup networks have an incentive to remain connected
(to protect their data).

4.2 Results and Discussion
In the following, we present and discuss our two main re-
sults: the impact of the repair threshold, and the cost of
maintenance for the four profiles of users.

4.2.1 Impact of the Repair Threshold
Our goal was to evaluate the impact of the repair threshold
on the repair rate and on the data loss rate. So we ran a set
of simulations with exactly the same parameters, presented
at the beginning of this section, while varying the repair
threshold between 132 and 180.

We present the results for 4 categories of nodes, differenti-
ated by their age. Note that during the life of a peer, its
category changes depending on its age, whereas its profile
does not change: at the beginning it is a Newcomers, then
after 3 months it will be counted as a Young peer, etc. The
following table details the interval of ages for each category:

Peers Age

Elder peers > 18 months
Old peers 6 - 18 months

Young peers 3 - 6 months
Newcomers < 3 months

Figure 1 plots the average rate of repairs, for the four cat-
egories depending on the repair threshold. Figure 2 plots
the average rate of data loss for the four categories, also
depending on the repair threshold.



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 200  400  600  800  1000  1200  1400  1600  1800  2000
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18
A

ve
ra

ge
 n

um
be

r 
of

 lo
st

 a
rc

hi
ve

s 
pe

r 
pe

er
s

Days

Cumulative number of lost archives

Newcomers
Young peers

Old peers
Elder peers

Figure 4: Evolution of the cumulative number of lost

archives for the four categories of peers

Average Rate of Repairs.As expected, the main result of
figure 1 is that the number of repairs increases accordingly
to the repair threshold. The bigger the threshold, the more
peers need to repair. The reason is that peers are progres-
sively losing their partners and, if the repair threshold is
high, it is reached sooner. The increase is not linear and
raises faster after 156. Another result is the stratification
between the profiles. Young peers (erratic ones) repair more
often than the elder ones (stable ones). We detail this in the
section 4.2.2.

Average Rate of Data Lost.As the repair threshold has
an impact on the number of repairs, it has also an impact
on the number of lost archives. As seen in the figure 2, if the
repair threshold is too small, a peer may lose too quickly its
partners, and will be unable to regenerate original blocks to
fulfill the repair. For instance, if the threshold is 132 and a
peer has 133 blocks available, it may lose more than 5 blocks
in a round if its partners are not very stable, and conse-
quently, with fewer than 128 blocks available in the system,
be unable to repair. Even if the disconnections were tem-
porary, the peer might never be able to repair early enough
before other definitive disconnections. On the contrary, if
the threshold is too high, a young peer will lose its blocks
too quickly and thus will have to repair at each round. But
that peer might have some difficulties to find new partners,
and so the peer might be unable to upload all the missing
blocks, and so, to prevent the number of its partners from
decreasing dangerously.

To decide on a good repair threshold, we have to find a good
compromise between the loss rate and the repair rate. As
the repair rate is strictly increasing, we can take the smallest
value of threshold with a good loss rate. 148 seems such
a good compromise. In the following, we present in more
details the simulations computed with a repair threshold set
to 148.

4.2.2 Impact of the Age of Peers
In the previous results, we have seen that the stable profiles
will repair less often than the unstable ones. We now explain
what is happening on an example, the simulation computed

with a repair threshold set to 148.

Repair Rate for Observers.Figure 3 shows the total num-
ber of repairs done by some particular peers, called ob-

servers. An observer is a special peer, whose age does not in-
crease like the age of other peers. Other peers cannot choose
an observer as a partner, but the observer can choose other
peers as partners, without however consuming their quota
(the quota is the number of blocks a peer can host for its
partners, and is set to 384 blocks in our simulations). As
normal peers, it has to repair if its number of available blocks
decreases below the repair threshold.

In this simulation, we put 5 observers:

Observer Age

Elder 3 months = the age limit
Senior 1 month
Adult 1 week

Teenager 1 day
Baby 1 hour

The figure shows that the repair rate strongly depends on
the age of a peer. The Elder and Senior observers have less
than 10 repairs in 2000 days, the Adult has less than 20
repairs, the Teenager has less than 100 repairs and finally
the Baby has a huge 900 repairs. Note that the global per-
formance are better than we may think. The Baby observer
has 900 repairs but a normal peer, during its lifetime in the
system, will only be considered as a Baby for one day and
as a Teenager for one week. So, quickly, most of the peers
will be as good as an Adult observer, or even better.

Analysis.The link between the age and the rate of repair
is clearly understandable. An elder peer is accepted by ev-
ery other peer, so he can choose to store its blocks on the
most stable peers. Moreover, after some repairs, he has re-
placed most of the unstable partners that he was forced to
use when he was a newcomer. Moreover, as a side-effect of
the protocol, stable peers will progressively form clusters of
partners.

Nevertheless, younger peers still have good performances,
since usually, one week is enough to find good stable part-
ners.

Losses of Archives.To understand why data is lost, we
plotted in figure 4 the evolution of the cumulative average
number of lost archives for the four categories of peers pre-
sented in the table of the section 4.2.1 (and not observers
this time).

The figure shows that an Newcomers will lose about 18
archives during 2000 days in the system, while all the other
peers almost never lose anything. The loss of data for New-
comer peers seems huge but we can also notice a faster in-
crease of data loss between the 200th and the 600th day.
This corresponds to a stabilisation phase due to the start



of the simulation where all peers have the same age. The
more eloquent part of the curve is between the 1000th and
the 2000th day when the system has became stable: we see
that the total number of lost archives drop to 2 in 1000 days
which is reasonable. Moreover in 1000 days, a peer would
be quickly considered as at least an unstable or a stable peer
and so would not suffer archives lost anymore in fact.

With these simulations, we have shown that it is possible to
optimize the maintenance cost of a peer-to-peer backup sys-
tem, by moving the load of maintenance from stable peers
(actually, long-term users of the system) to unstable peers.
Moreover, we have shown that the cost is higher for new-
comers only for a short period.

5. RELATED WORK
As far as we know, no previous study of viability of peer-
to-peer backup systems has been done. However, some work
has already been done on their design, for example OceanStore[21,
20], Past[22], pStore[1], Pastiche[6], a system designed by
Lillibrige et al.[15], Total Recall[3], PeerStore [13], Pastis[4]
and Glacier[11].

Some of these systems are presented as peer-to-peer file-
systems which makes them a little different from a backup
system. In particular, persistence of data in backup systems
is more important than read/write performances, while it is
the opposite for file-systems. Most of them are still in pro-
totyping phase, without real deployments. The main diffi-
culty of this phase is that it is hard to have a large enough
testbed, i.e. enough users trusting the system to use it on a
daily basis. Our work with large size simulations could help
developers to tune the parameters of these systems, like the
repair threshold which is very difficult to set otherwise.

Another interesting optimization of the maintenance of a
peer-to-peer backup system is presented in [10]. To decrease
the probability of losing archives, their system measures the
churn, i.e. the rate of departure of partners, and pro-actively
creates new blocks at the same rate. Consequently, peer
don’t need to know exactly which partners have departed,
relaxing the stress on the monitoring system.

6. CONCLUSION
This work has two main contributions. The first one is to
prove the viability of a peer-to-peer backup system. We
showed that, with a simple scheme based on lifetime esti-
mation, a peer-to-peer backup system using erasure codes
could achieve good performances in term of maintenance
cost. Indeed, the number of repairs for normal users is far
below the limit of feasibility imposed by the bandwidth of
actual Internet home connections with almost one repair per
archive in 200 days.

The second contribution is to provide a new criteria for the
selection of partners. In our scheme, an older peer that has
used the system for a long time, is considered more stable
and more reliable than a newcomer. This assumption has of-
ten been verified in other systems. With this selection crite-
ria, we achieve excellent performance for older peers, which
are also the best contributors of the system. As a result,
this may also be considered as a kind of tit-for-tat protocol.
Reliable peers will be rewarded by excellent performances.

As future works, we plan to improve our simulations by al-
lowing parameters to adapt more dynamically. For instance,
the repair threshold might be changed depending on the peer
context, its difficulties to find partners, the data that it needs
to download, etc. We also plan to investigate more on the
impact of temporary disconnections, in particular by delay-
ing the repair to allow peers to come back in the system.

7. REFERENCES
[1] Batten, C., Barr, K., Saraf, A., and Trepetin,

S. pStore: A secure peer-to-peer backup system. Tech.
Rep. LCS-632, MIT Laboratory for Computer Science,
2001.

[2] Bhagwan, R., Savage, S., and Voelker, G.

Understanding availability. In IPTPS, Int’l Workshop

On Peer-To-Peer Systems (2003).

[3] Bhagwan, R., Tati, K., Cheng, Y., Savage, S.,

and Voelker, G. Total recall: System support for
automated availability management. In NSDI,

Symposium on Networked Systems Design and

Implementation (2004).

[4] Busca, J.-M., Picconi, F., and Sens, P. Pastis: A
highly-scalable multi-user peer-to-peer file system. In
Euro-Par’2005, International Euro-Par Conference

(2005).

[5] Bustamante, F., and Qiao, Y. Friendships that
last: Peer lifespan and its role in P2P protocols. In
Int’l Workshop on Web Content Caching and

Distribution (2003).

[6] Cox, L., and Noble, B. Pastiche: Making backup
cheap and easy. In OSDI, Symposium on Operating

Systems Design and Implementation (2002).

[7] Cox, L., and Noble, B. Samsara: Honor among
thieves in peer-to-peer storage. In SOSP, Symp. on

Operating Systems Principles (2003).

[8] Dimakis, A. G., Godfrey, B., Wainwright, M. J.,

and Ramchandran, K. Network coding for
distributed storage systems. In INFOCOM,

International Conference on Computer

Communications (2007).

[9] Duminuco, A., and Biersack, E. W. Hierarchical
codes: how to make erasure codes attractive for
peer-to-peer storage systems. In P2P, International

Conference on Peer-to-Peer Computing (2008).

[10] Duminuco, A., Biersack, E. W., and En Najjary,

T. Proactive replication in distributed storage systems
using machine availability estimation. In CoNEXT’07,

3rd International Conference on emerging Networking

EXperiments and Technologies, December 10-13,

2007, New York, USA (Dec 2007).

[11] Haeberlen, A., Mislove, A., and Druschel, P.

Glacier: Highly durable, decentralized storage despite
massive correlated failures. In NSDI, Symposium on

Networked Systems Design and Implementation

(2005).

[12] Jelasity, M., Montresor, A., Jesi, G. P., and

Voulgaris, S. Peersim simulator, a peer-to-peer
simulator.

[13] Landers, M., Zhang, H., and Tan, K.-L.

Peerstore: Better performance by relaxing in
peer-to-peer backup. In P2P, Conference on

Peer-to-Peer Computing (2004).



[14] Le Fessant, F., Sengul, C., and Kermarrec,

A.-M. Pacemaker: Tracking peer availability in large
networks. Tech. rep., INRIA, 2008. RR-6594.

[15] Lillibridge, M., Elnikety, S., Birrell, A.,

Burrows, M., and Isard, M. A cooperative internet
backup scheme. In USENIX Annual Technical

Conference, General Track (2003).

[16] Maymounkov, P., and Mazieres, D. Kademlia: A
peer-to-peer information system based on the XOR
metric. In IPTPS, Int’l Workshop On Peer-To-Peer

Systems (2002).

[17] Morales, R., and Gupta, I. AVMON: Optimal and
scalable discovery of consistent availability monitoring
overlays for distributed systems. In ICDCS: Int’l

Conf. on Distributed Computing Systems (2007).

[18] Oualha, N., Önen, M., and Roudier, Y. Verifying
self-organized storage with bilinear pairings. Tech.
Rep. EURECOM+2311, Institut Eurecom, France,
Jun 2007.

[19] Reed, I. S., and Solomon, G. Polynomial Codes
Over Certain Finite Fields. Journal of the Society for

Industrial and Applied Mathematics 8, 2 (1960),
300–304.

[20] Rhea, S., Eaton, P., Geels, D., Weatherspoon,

H., Zhao, B., and Kubiatowicz, J. Pond: The
oceanstore prototype. In FAST, Conference on File

and Storage Technologies (2003).

[21] Rhea, S. C., and Kubiatowicz, J. Probabilistic
location and routing. In INFOCOM, International

Conference on Computer Communications (2002).

[22] Rowstron, A., and Druschel, P. Storage
management and caching in past, a large-scale,
persistent peer-to-peer storage utility. In SOSP, Symp.

on Operating Systems Principles (2001).

[23] Tian, J., and Dai, Y. Understanding the dynamic of
peer-to-peer systems. In IPTPS, Int’l Workshop On

Peer-To-Peer Systems (2007).


