
DNA Compression Challenge Revisited

Behshad Behzadi and Fabrice Le Fessant

LIX, Ecole Polytechnique, Palaiseau cedex 91128, France
{Behzadi, Lefessan}@lix.polytechnique.fr

Abstract. Standard compression algorithms are not able to compress
DNA sequences. Recently, new algorithms have been introduced specifi-
cally for this purpose, often using detection of long approximate repeats.
In this paper, we present another algorithm, DNAPack, based on dy-
namic programming. In comparison with former existing programs, it
compresses DNA slighly better, while the cost of dynamic programming
is almost neglectible.

1 Introduction

DNA sequences contain only four bases {A,C, T, G}. Thus, each base (symbol)
can be represented by two bits. However, the standard text compression tools,
such as compress, gzip and bzip2, cannot compress these DNA sequences; the
size of the files encoded with these tools is larger than two bits per symbol.
Consequently, DNA sequences compression has recently become a challenge.

Some characteristics of DNA sequences show that they are not random se-
quences. If these sequences were totally random, the most efficient and logical
way to store them would be using two bits per base. However, DNA is used for
the expression of proteins in living organisms, and thus must contain some log-
ical organisation. Moreover, approximate repeats (repeats with mutations) and
complementary palindromes (reversed repeats, where A and C are respectively
replaced by T and G, and reciprocally) are well-known to frequently appear
inside long DNA sequences.

Based on these characteristics, several algorithms have been proposed for the
compression of DNA sequences. However, even if these algorithms obtain much
better results than standard universal compression algorithms, the compression
ratios are not very high. We briefly discuss some of the existing algorithms in
the order of their introduction (from the oldest to the most recent ones):

Biocompress [8], and its second version Biocompress-2 [9], were the first DNA-
specific compression algorithms. They are similar to the Ziv-Lampel data com-
pression method. Biocompress-2 detects exact repeats and complementary palin-
dromes located in the already encoded sequence, and then encodes them by the
repeat length and the position of a previous repeat occurrence. When no signifi-
cant repetition is found, Biocompress-2 uses order-2 arithmetic coding (Arith-2).

The Cfact algorithm [13] looks for the longest exact matching repeat. For this
purpose, it uses a suffix tree on the entire sequence. Using two passes, repetitions

2 Behshad Behzadi and Fabrice Le Fessant

are encoded this way when the gain is guaranteed, otherwise the two-bits-per-
base (2-Bits) encoding is used.

The GenCompress algorithm [3, 4, 10] yields to a significantly better com-
pression ratio than the previous algorithms. The idea is to use approximate
(and not exact) repetitions. It exists in two variants: GenCompress-1 uses the
Hamming distance (only substitutions) for the repeats while GenCompress-2
uses the edition distance (deletion, insertion and substitution) for the encoding
of the repeats.

CTW+LZ [11] is another algorithm, based on the context tree weighting
method. It combines a LZ-77 type method like GenCompress and the CTW al-
gorithm. Long exact/appoximate repeats are encoded by LZ77-type algorithm,
while short repeats are encoded by CTW . Although they obtain good compres-
sion ratios, its execution time is too high to be used for long sequences.

DNACompress [5] is a DNA compression tool, which employs the Ziv-
Lampel compression scheme as Biocompress-2 and GenCompress. It consists
of two phases: during the first phase, it finds all approximate repeats including
complementary palindromes, using a specific software, PatternHunter [12]. Then
the approximate repeats and the non-repeat regions are encoded. In practice, the
execution time of DNACompress is much less than GenCompress.

DNAC [7] is another DNA compression tool, working in four phases: during
the first phase, it builds a suffix tree to locate exact repeats. During the second
phase, all the exact repeats are extended into approximate repeats by dynamic
programming. In the third phase, it extracts the optimal non-overlapping repeats
from the overlapping ones, and in the last phase, it encodes all the repeats.

DNASequitur is a grammar-based compression algorithm for DNA sequences
which infers a context-free grammar to represent the input data. Even if the
algorithm is elegant, the practical results show that other methods achieve better
compression ratios.

In this paper, we propose a new algorithm, DNAPack, which uses Hamming
distance for the repeats and complementary palindromes, and either CTW or
Arith-2 compression for the non-repeat regions. Unlike the above algorithms,
DNAPack does not choose the repeats by a greedy algorithm, but uses a dynamic
programming approach instead.

The content of the paper is organized as follows: in section 2, we describe the
different techniques and concepts used in our algorithm. In section 3, we present
the algorithm we use to find a semi-optimal decomposition of the file, and the
encoding of the compressed file is presented in section 4. Finally, in section 5, we
compare our results on a standard set of DNA sequences with results published
for the other algorithms.

2 Useful Techniques

Our algorithm like all of the other DNA-oriented algorithms is based on parti-
tioning the sequence into two kinds of segments: the repeat segments (or copied)
and the non-repeat segments. The repeat segments are either approximate direct

Lecture Notes in Computer Science 3

Uncoded
data

Encoded
data

Arithmetic
encoder

CTW model
estimator Probabilities

Fig. 1. The schema of a CTW encoder

repeats (repeats with some substitutions) or the approximate complementary
palindrome repeats (reversed repeats where bases are replaced by their com-
plementary base). In order to achieve the best results in compression, several
techniques are used for encoding the different kinds of segments. In this section,
we describe a set of techniques and methods which we use in our algorithm.

2.1 Encoding of Non-Repeat Regions

For the encoding of the non-repeat regions, we need to compress arbitrary se-
quences of bases without long repeats. Two different techniques have been shown
to be efficient on these regions:

Order-2 Arithmetic Coding. In comparison to the Huffman Coding algo-
rithm, Arithmetic Coding overcomes the constraint that the symbol to be en-
coded has to be coded by a round number of bits. This leads to higher efficiency
and a better compression ratio in general. The adaptative arithmetic coding of
order 2 has the best compression ratio on the DNA sequences; in this arithmetic
encoding the adaptative probability of a symbol is computed from the context
after which it appears. The best ratio for DNA is obtained for order-2 (contexts
are the last two symbols), which seems to correspond to the amino-acid codons,
i. e. groups of three bases coding an amino-acid in a protein.

Context Tree Weighting Coding. The probabilities in an arithmetic coding
can be computed in different ways. Willems et al. in [14] proposed a univer-
sal compression algorithm denoted by Context Tree Weighting (CTW) method
which has on average a good compression ratio for an unknown model. The CTW
encoder consists of two parts (see Figure 1): a source modeler which is the actual
CTW algorithm, which receives the uncompressed data and estimates the prob-
ability of the next symbol and an arithmetic encoder which uses the estimated
probabilities to compress the data.

One important concept in the the CTW algorithm is the context tree which
is built dynamically during encoding/decoding process. All of the already visited

4 Behshad Behzadi and Fabrice Le Fessant

substrings of shorter size than a fixed bound (the height of the tree), exist as
a path in the tree. Each node of the tree contains a probability. In order to
encode a given bit, the following steps are performed: the path in the context
tree which coincides with the current context is searched and if needed extended.
For every node in this context path, an estimated probability of the next symbol
is computed using the data stored in the node. Then a weighted probability is
computed using a weighting function on all the estimated probability values. The
idea here is that if good coding distributions for two different texts are weighted
then the weighted distribution is a good coding distribution for both sources.
Finally the weighted probability is sent to the arithmetic encoder which encodes
the symbol, and the encoder goes to the next symbol.

2.2 Encoding of Numbers

Different integer numbers have to be encoded in our algorithm. For example,
the segments have not a fixed length, so this length has to be encoded. For any
repeat segment, the position of the reference substring of the input, from which
we copy this segment, should be encoded. When the copies are approximate
(and not exact) the positions of the modifications should be encoded. There is
no bound on any of these numbers, so these integers should be encoded in a self-
delimited way rather than being encoded in a fix number of bits. For encoding
the reference position, encoding the relative difference of position of the reference
and the copy itself is preferable.

Fibonacci Encoding. An efficient self-delimited representation of arbitrary
numbers is the Fibonacci encoding [1]. The Fibonacci encoding is based on the
fact that any positive integer n can be uniquely expressed as the sum of distinct
Fibonacci numbers, so that no two consecutive Fibonacci numbers are used in the
representation. This means that if we use binary representation of a Fibonacci
encoding of a number, there are no two consecutive 1 bits. So by adding a 1 after
the 1 corresponding to the biggest Fibonacci number in the sum, the representa-
tion becomes self-delimited. The Fibonacci representation of some numbers are
given in the Table 1.

Shifted Encoding. Although Fibonacci encoding is a good coder for an un-
known set of numbers, one can construct better codes if we have some informa-
tion about the numbers. For example, if there are many small numbers and not
a lot of large numbers to encode, Fibonacci encoding can be improved by using
a shifted version. We define a k-shifted Fibonacci encoding as a coding where all
the numbers in the range [1..2k − 1] into their normal binary representation and
codes all the other numbres 0k followed by the Fibonacci encoding of n−(2k−1).
In Table 1, k-shifted representation of some numbers for k = 1 and k = 3 are
given.

Lecture Notes in Computer Science 5

1 2 3 4 8 18

Fibonacci 11 011 0011 1011 000011 0001011

1-Shifted Fibonacci 1 011 0011 00011 001011 01010011

3-Shifted Fibonacci 001 010 011 100 00011 00001011

Table 1. Fibonacci and shifted fibonacci representation of some numbers; depending
on the distribution of the numbers to be encoded one method can be prefered to the
others.

2.3 Hamming-based Transcription

Suppose a substring v is an approximate repeat of substring u of the same size.
To encode v, we first encode the relative position of its already visited repeat u
(the pattern to be copied). Then we need to encode the edit transcription which
transforms u to v. We use three types of instructions: the first instruction is
Copy(l) which indicates that the next l symbols of the two substrings are the
same. Replace(x) indicates that the symbol in the corrent position of u should
be replaced by x in order to generate v. The last instruction is the Finish in-
struction which indicates that v is completely generated. Using this termination
instruction is a way to prevent encoding the size of the string v.

One important remark is that we use Hamming distance, i.e. approximation
is done only by substitutions, whereas some other compressors use the Edit
distance, where approximation can also be done by deletions and insertions.
Although we didn’t experiment with it, previously published results have shown
that the benefit in compression ratio [3] is not worth the increased complexity
and computation time.

3 The Algorithm

3.1 Dynamic Programming vs. Greedy Algorithms

DNACompress, GenCompress and CTWLZ obtain the best results among the
existing algorithms. Both GenCompress and DNACompress use the greedy ap-
proach for selection of the repeat segments. GenCompress selects the best prefix
of the region which is not yet encoded to be coded at the next step. As shown
in figure 2(a), the greedy selection of the segment A, prevents the possibility of
selecting the longer segment B. DNACompress has a different greedy scheme. In
each step, it chooses the most profitable segment which does not intersect with
the already chosen segments. Figure 2(b) shows how, by this greedy selection,
the algorithm may be prevented from choosing the best set of segments.

CTW+LZ tries to solve the problem of GenCompress by using some heuristics
which are unfortunately very time-consuming without yielding to real improve-
ments. Moreover, they cannot be applied to long sequences, because of their time
consumption.

6 Behshad Behzadi and Fabrice Le Fessant

A : size = 9

B : size = 6 C : size =7

B : size = 16

A : size = 6

Fig. 2. (a) On the left-hand side, choosing the first segment as gencompress
does is not optimal. (b) On the right-hand side, choosing the biggest segment
and discarding overlapping segments is also non-optimal.

In our algorithm, DNAPack, we use a dynamic programming approach for se-
lection of the segments, therefore solving the problem of greedy selection. We use
a set of optimizations which make the running time of our algorithm, reasonably
small, so it can be applied to very long sequences.

Let s be the input DNA sequence. Let BestComp[i] be the smallest com-
pressed size of the prefix s[1..i]. The following simple recurrence is the general
scheme of our dynamic programming.

In this section firstly we explain our method which is based on dynamic
programming. Then we comment about the optimizations which makes our al-
gorithm works in a reasonably good time.

Initialization:
BestComp[0] = 0

Recurrence:

∀i > 0 BestComp[i] = min

8<:
BestComp[j] + CopyCost(j, i, k) ∀k ∀ 0 < j < i
BestComp[j] + PalinCopyCost(j, i, k) ∀k ∀ 0 < j < i
BestCopy[j] + MinCost(j + 1, i) ∀ 0 < j < i

Fig. 3. Dynamic Programming scheme for finding the best compression

CopyCost(j, i, k) is the number of bits needed to encode the substring of size
k starting at position i if it is an approximate repeat of the substring of size
k starting at j. The PalinCost is similarly defined for reverse complementary
substrings. The function MinCost(j + 1, i) is the number of bits needed for
compression of the segment s[j + 1, i]. It depends on the size of the substring
(for the size of the Fibonacci encoding) as well as the compression ratio obtained
for the algorithm by arithmetic coding or CTW. MinCost allows us to create a
repeat segment only if it would yield a benefit in the compression ratio. These
three functions are estimations of the real cost, since the efficiency of some
optimizations done during the encoding cannot be computed at this point.

Lecture Notes in Computer Science 7

3.2 Reducing Execution Time

A direct implementation of this algorithm has a complexity of O(n3), which is
much too high for long DNA sequences. Therefore, we use several techniques to
reduce the execution time in pratice. First, we authorize only the repeats which
have a common seed. The seed is a small string of size l (a parameter of our
program), whose already found positions are stored in a hash table. To find a
repeat, we need only to find the positions of its seed in the hash table, and try
to increase their sizes.

In the third line of the recurrence, we do not really need to examine all the
j’s. A careful observation shows that we only need to compute MinCost(j+1, i)
for a j which is the end of a repeat segment, since there is no gain in creating
two consecutive non-repeat segments: each non-repeat segment contains its size
in Fibonacci encoding, and the size of two small encoded numbers is greater
than the size of one big encoded number. In fact, we can even narrow this search
among all of the j’s which BestComp[j+1] is not optimized by copying a segment
from the same position as BestComp[j].

In the case of repeats, if s[i − 1] = s[j − 1] then there is no need to check
the different values of k One can verify that BestComp[j − 1] + CopyCost(j −
1, i, k + 1) ≤ BestComp[j] + CopyCost(j, i, k).

Similar observation can be made for the case of the reverse repeat (2nd line
of the recurrence). As a result of these optimizations, the number of possible j
and k to search in our dynamic programming will be reduced enormously such
that it is possible to execute the algorithm on large sequences in a few seconds
(in our experimentations for example, MinCost(j + 1, i) is only computed for 2
or 3 different j for every i).

4 Practical Encoding

As written in the introduction, the encoding of bases on two bits (A with 00, T
with 01, C with 10 and G with 11 for example) already gives a good compres-
sion ratio, which can be hard to beat if we don’t pay enough intention to the
encoding scheme used for the approximate repeats. Indeed, previous compres-
sion algorithms for DNA in the litterature mainly focus on the algorithm used
to find the repeats, unfortunately forgetting to discuss the various ways of en-
coding them, and thus, leading the not so good compressors. As a consequence,
we discuss here the choice we did in our implementation to efficiently encode the
various compression operations.

The encoding function takes as input a sequence of segments, where each
segment is either a sequence of bases, or a repeat of a preceding sequence of
bases. It outputs a file containing the same data in a compact representation.

4.1 The structure of the compressed file

The compressed file consists of three different regions: HEADER, CODE and
BASES.

8 Behshad Behzadi and Fabrice Le Fessant

The HEADER contains all the information that must be known to decode the
CODE and BASES regions. For example, it contains:

– The type of compression used for sequences of bases (it is either Arithmetic-2
Coding, CTW or None), on 2 bits.

– The number of segments in the CODE part.
– The minimum size of the first Copy operation in the repeats.
– The most frequent base substited for another base in a repeat substitution.

The CODE region consists of two different types of segments: repeats and non-
repeats. For the non-repeats segments, the CODE region only contains the length
of the segment, encoded in Fibonacci encoding, whereas all the bases are put in
the BASES region. When all the non-repeats have been processed, the complete
BASES region is compressed using either Arithmetic-2 Coding, Context-Tree
Weighted Coding or 2-bits Coding, whichever gives the best compression ratio.

Since |FibEncode(a + b)| ≤ |FibEncode(a)| + |FibEncode(b)|, the CODE
region never contains two consecutive non-repeats segments, as they would more
efficiently be encoded as a single segment. Consequently, we use the following
encoding to describe the type of the segments:

– - an empty code for the first segment of the gene, which is always a non-
repeat.

– 0 for a non-repeat segment after a repeat segment.
– 1 for a repeat segment after a repeat segment.
– - an empty code for a repeat segment after a non-repeat segment.

4.2 The encoding of repeats

A repeat segment must contain the following information:

– The type of repeat: direct repeat or complement-palindrome repeat. We only
need one bit for this information.

– The offset to the origin of the repeat (increased by one for complement-
palindrome repeats to avoid zeroes). We simply encode this offset in Fi-
bonacci encoding.

– The sequence of operations to repeat the segment, containing either copies
or mutations.

In this first implementation, we force the sequence of operations to always
finish with a Copy. Thanks to this simplification, a single bit can be used per
operation to distinguish between copies and Replaces:

– - an empty code for the first operation, which is always a Copy, since our
algorithm to find repeats looks for repeats with at least l characters in com-
mon.

– 0 for the end of the repeat after a Copy.
– 1 for a Replace after a Copy.
– 0 for a Copy after a Replace.
– 1 for a Replace after a Replace.

Lecture Notes in Computer Science 9

4.3 The encoding of operations arguments

A Copy operation requires only one argument, the number of bases to be copied
from the original segment. Although we cannot optimize the representation of
this length in the general case, our algorithm guarantees that at least the first l
bases (called seed) will be similar between the two substrings. Thus, we compute
the minimal length of the first Copy of each repeat-segment, and we always
encode the first Copy of a segment after removing this mimimum. With hundreds
of repeats in each gene, 4 or 5 bits saved per repeat, this simple optimization
finally saves a few thousands bits.

For each Replace operation, we need to supply the base to replace the former
base of the original segment. However, since we know that former base, the new
base can only be one of the 3 other bases. Therefore, we can represent it more
efficiently:

– 0 for the most probable base.
– 10 and 11 for the two other bases.

Instead of using probabilities, our first implementation simply computes the
most frequent substitution for every former base, and store it in the HEADER
region of the file.

5 Experimental Results

sequence length BioCompress-2 GenCompress CTW-LZ DNACompress DNAPack

CHMPXX 121024 1.6848 1.6730 1.6690 1.6716 1.6602

CHNTXX 155844 1.6172 1.6146 1.6120 1.6127 1.6103

HEHCMVCG 229354 1.8480 1.8470 1.8414 1.8492 1.8346

HUMDYSTROP 33770 1.9262 1.9231 1.9175 1.9116 1.9088

HUMGHCSA 66495 1.3074 1.0969 1.0972 1.0272 1.039

HUMHBB 73308 1.8800 1.8204 1.8082 1.7897 1.7771

HUMHDABCD 58864 1.8770 1.8192 1.8218 1.7951 1.7394

HUMHPRTB 56737 1.9066 1.8466 1.8433 1.8165 1.7886

MPOMTCG 186609 1.9378 1.9058 1.9000 1.8920 1.8932

PANMTPACGA 100314 1.8752 1.8624 1.8555 1.8556 1.8535

VACCG 191737 1.7614 1.7614 1.7616 1.7580 1.7583

Average — 1.7837 1.7428 1.7389 1.7254 1.7148

Table 2. Comparison of compression ratios for different algorithms (bits/base)

To experiment our algorithm, we tried to compress a standard set of DNA
sequences with our algorithm, and we compare with results published for other
efficient DNA compressors. The results are displayed on table 2. The table shows

10 Behshad Behzadi and Fabrice Le Fessant

that our program, DNAPack, performs slightly better than other programs, ex-
cept DNACompress in a few cases.

During our experiments, we tried to compress all the sequences while varying
a few parameters used by our algorithm:

– l, the size of the exact prefix that two repeats must have in common to be
compared.

– compressions, the set of compressions algorithms used to compress BASES,
ranging in {Arith− 2, CTW, 2−Bits}.

– approx, the estimation of the compression ratio that will probably be ob-
tained on the BASES region, used during the dynamic programming phase.

Due to space constraints, we cannot display all these results, but we can
briefly summarize them: a big l gives very short execution time, without de-
creasing too much the compression ratio (in the previous table, the three first
genes are compressed with l = 30, and all results are obtained in less than 15
seconds, except for MPOMTCG and VACCG which were produced in around 1
minutes). The two different compressions of BASES are also important: among
the 11 genes compressed, 7 were compressed using CTW, 4 using Arith-2. For
some genes, 2-Bits was more efficient than Arith-2. Finally, having the most ac-
curate value of approx also impacts a lot on performances, especially for small
values of l, where a lot of choices between small repeats and non-repeats must
be done.

6 Conclusion

We have presented a new algorithm to compress DNA sequences. As most other
DNA compressors, our algorithm works by finding approximate repeats and try-
ing to optimally encode them. The first version of our implementation has results
which on average are slightly better than former algorithms. It is mainly due to
the benefits of dynamic programming, and the careful choice of the encoding of
the repeats. We are now working on different aspects of our compressor: first,
we are tuning the different parameters to improve the compression ratio while
decreasing the computation time; we are experimenting it on larger genes (chro-
mosomes contain at least twenty million bases on average), and finally, we are
trying to find a better compression method for some sequences, where approx-
imate repeats are unfrequent (HUMDYSTROP for example), who failed to be
compress efficiently by all the known compressors.

References

1. Apostolico A. and Fraenkel A.S.: Robust transmission of unbounded strings using
Fibonacci representations. IEEE trans. inform., 33(2), pp 238-245, 1987.

2. Apostolico A. and Lonardi S.: Compression of Biological Sequences by Greedy Off-
line Textual Substitution. In proc. Data Compression Conference, IEEE Computer
Society Press, pp 143-152, 2000.

Lecture Notes in Computer Science 11

3. Chen, X., Kwong, S., Li, M.: A compression Algorithm for DNA sequences and
its applications in genome comparison. The 10th workshop on Genome Informtics
(GIW’99), pp 51-61, Tokyo, Japan, 1999.

4. Chen, X., Kwong, S., Li, M.: A compression Algorithm for DNA sequences. IEEE
Engineering in Medicine and Biolgoy Magazine, 20(4), 61-66, Jul/Aug 2001.

5. Chen, X., Li, M., Ma, B. and Tromp, J.: DNACompress: fast and effective DNA
sequence compression. Bioinformatics, 18:1696-1698, 2002.

6. Cherniavski N. and Lander R.: Grammar-based Compression of DNA sequences.
2004

7. Chang C.-H.: DNAC: A Compression Algorithm for DNA Sequences by Non-
overlapping Approximate Repeats. Master Thesis, 2004.

8. Grumbach S. and Tahi F.: Compression of DNA Sequences. In Data compression
conference, pp 340-350. IEEE Computer Society Press, 1993.

9. Grumbach S. and Tahi F.: A new Challenge for compression algorithms: genetic
sequences. Journal of Information Processing and Management, 30, 875-866, 1994.

10. Li M., Badger J. H., Chen X., Kwong S., Kearney P., Zhang H.: An informa-
tion based sequences distance and its application to whole motochondrial genome
phylogeny,” Bioinformatics, 17(2): 149-154, 2001.

11. Matsumuto T., Sadakane K.,Imai H.: Biological sequence compression algorithms.
Genome Inform. Ser. Wokrshop Genome Inform. 11:43-52, 2000

12. Ma B., Tromp J. and Li M.: PatternHunter–faster and more sensitive homology
search. Bioinformatics, 18, 440-445, 2002.

13. Rivals E., Delahaye J.-P., Dauchet M., Delgrange O.: A Guaranteed Compression
Scheme for Repetitive DNA Sequences. Data Compression Conference, 1996.

14. Willems F. M. J., Shtrakov Y. M. and Tjalkens T. J.: The Context Tree Weighting
Method: Basic Properties. IEEE Trans. Inform. Theory, IT-41(3), pp 653-664, 1995.

